数字孪生定义及应用介绍
1 数字孪生(Digital Twin, DT)概述
2010 年,数字孪生由NASA 首次书面提出并给出了定义,即充分利用物理模型、传感器更新、运行历史等数据,集成多学科、多物理量、多尺度、多概率的仿真过程,在虚拟空间中完成映射,从而反映相对应的实体装备的全生命周期过程。
数字孪生是一种基于云的虚拟表示技术,它通过集成多学科、多尺度的仿真过程,在虚拟空间中完成映射,从而反映相对应的实体装备或系统的全生命周期过程。
1.1 定义
数字孪生是充分利用物理模型、传感器更新、运行历史等数据,集成多学科、多物理量、多尺度、多概率的仿真过程,在虚拟空间中完成映射,从而反映相对应的实体装备或系统的全生命周期过程。它是一种超越现实的概念,可以被视为一个或多个重要的、彼此依赖的装备或系统的数字化映射。
数字孪生六维模型包括:
- 物理实体
- 虚拟实体
- 连接
- 服务
- 数据
- 知识
由此,将数字孪生六维模型和流域治理管理相结合,提出数字孪生流域包括物理流域、虚拟流域、实时连接交互、数字赋能服务、孪生流域数据及孪生流域知识6 个基本要素。在6 个要素协同下,完成对流域的动态监控、诊断评估、模拟仿真、预测预报、决策优化、管理控制等功能。其中,虚拟流域是物理流域的数字镜像,是数字孪生流域的虚拟孪生体; 物理流域是数字孪生流域的物理孪生体。
1.2 功能
- 模拟与仿真:数字孪生可以在虚拟环境中对实体进行高精度的模拟和仿真,预测实体的行为和性能。
- 实时监测与优化:通过连接实体的传感器和执行器,数字孪生可以实时监测实体的状态,并根据数据进行优化和调整。
- 预测性维护:通过分析历史数据和实时数据,数字孪生可以预测装备或系统的维护需求,提前进行维护计划,减少停机时间。
- 决策支持:数字孪生可以为决策者提供基于数据的洞察和预测,帮助他们做出更明智的决策。