【WRF模拟】使用 GIS4WRF 模拟 2018 年欧洲热浪(以阿姆斯特丹为中心)

本博客结合GIS4WRF官网提供教程,总结使用 GIS4WRF 模拟 2018 年欧洲热浪(以阿姆斯特丹为中心)的详细步骤。

案例介绍

GIS4WRF官网提供教程-The 2018 European heat wave

本教程演示如何使用 GIS4WRF 插件在 QGIS 中快速配置并运行一个真实的天气模拟案例,模拟时间为:

  • 2018年7月15日 12:00 至 18:00(6小时)
  • 中心位置:荷兰阿姆斯特丹

预计总耗时:20 分钟以内(包括模拟)
模拟运行时间:< 5 分钟(在普通双核/8GB 内存电脑上)
在这里插入图片描述

✅ 开始前的准备工作清单:

使用 GIS4WRF 模拟总流程

🧭 全流程共 6 步:

  1. 创建项目
  2. 定义模拟区域(Domain)
  3. 下载输入数据(地理+气象)
  4. 选择输入数据
  5. 配置并运行 WPS & WRF
  6. 查看模拟结果

创建项目

1、打开 QGIS,点击菜单:插件 > GIS4WRF
在这里插入图片描述

2、在:Simulation > General中点击 Create a GIS4WRF Project

3、新建一个文件夹命名为:2018_07_15_Amsterdam
在这里插入图片描述

4、选择该文件夹作为项目目录
在这里插入图片描述
🚨 GIS4WRF 会自动保存所有配置到项目文件中,无需手动保存。

定义模拟区域(Domain)

1、在菜单 Simulation > Domain 中设置:
在这里插入图片描述

参数
坐标系统Lambert Conformal
True Latitude 13.5
True Latitude 27
Standard Longitude4
网格间距3000 米
中心经度4.8952
中心纬度52.3702
水平网格数量30
垂直网格数量30
子域与父域比例3
边缘填充上/右/下/左:10

2、启用高级配置

3、启用子域嵌套(Parenting)

可在图层中查看域边界并“缩放至组”以聚焦区域
在这里插入图片描述
GIS4WRF 从内到外定义域。这使您可以完全控制最内层域的定位。

下载输入数据(地理+气象)

需要两类数据:

  • 地理数据(Geo):用于 WPS 地理处理
  • 气象数据(Met):用于初始边界条件

⚠ 注意:必须等地理数据和气象数据都下载完成后,才能进入下一步。

🔷 地理数据

菜单:Dataset > Geo
点击:Select Mandatory Fields in Lowest Resolution
然后点击:Download Selected Datasets
在这里插入图片描述

静态地理数据下载完成后,再进行气象数据的下载。

🔶 气象数据

菜单:Dataset > Met
设置如下:

参数
数据集ds083.3
产品Analysis
起始时间2018年7月15日 12:00
结束时间2018年7月15日 18:00

点击“Subset”,在图层面板中选择 Domain 2
点击“Set from Active Layer”
然后点击“Download”开始下载
在这里插入图片描述

选择输入数据

菜单:Simulation > Data
在 Domain 1 和 Domain 2 输入框中输入 lowres
选择数据时间段 2018-07-15 12:00 - 2018-07-15 18:00
点击:Use Dataset Selection from List
在这里插入图片描述
GIS4WRF 会自动填充 WPS 和 WRF 所需配置(namelists)

配置并运行 WPS & WRF

🌀 运行 WPS

WPS 包括三个程序:

  • Geogrid
  • Ungrib
  • Metgrid

菜单:Simulation > Run
在这里插入图片描述

依次点击这三个按钮,每个步骤完成后会提示成功。
在这里插入图片描述

🌬️ 运行 WRF

WRF 运行包括两个步骤:

  • Real
  • WRF

虽然 GIS4WRF 会自动填充大部分配置,但物理参数需手动设置。

✅ 设置 namelist.input 文件
点击 Open configuration,将以下内容粘贴进去并点击保存:
在这里插入图片描述

&time_control
    start_year = 2018, 2018
    start_month = 7, 7
    start_day = 15, 15
    start_hour = 12, 12
    end_year = 2018, 2018
    end_month = 7, 7
    end_day = 15, 15
    end_hour = 18, 18
    interval_seconds = 21600
    input_from_file = .true., .true.
    history_interval = 10, 10
    frames_per_outfile = 100, 100
    restart = .false.
    restart_interval = 7200
    io_form_history = 2
    io_form_restart = 2
    io_form_input = 2
    io_form_boundary = 2
    start_minute = 0, 0
    start_second = 0, 0
    end_minute = 0, 0
    end_second = 0, 0
    nocolons = .true.
/

&domains
    time_step = 40
    time_step_fract_num = 0
    time_step_fract_den = 1
    max_dom = 2
    e_we = 31, 31
    e_sn = 31, 31
    e_vert = 33, 33
    p_top_requested = 5000
    num_metgrid_levels = 32
    num_metgrid_soil_levels = 4
    dx = 9000.0, 3000.0
    dy = 9000.0, 3000.0
    grid_id = 1, 2
    parent_id = 1, 1
    i_parent_start = 1, 11
    j_parent_start = 1, 11
    parent_grid_ratio = 1, 3
    parent_time_step_ratio = 1, 3
    feedback = 1
    smooth_option = 0
/

&physics
    physics_suite = 'CONUS'
    mp_physics = 0, 0
    cu_physics = 0, 0
    radt = 9, 3
    bldt = 0, 0
    cudt = 0, 0
    icloud = 0
    num_land_cat = 21
    sf_urban_physics = 1, 1
/

&dynamics
    hybrid_opt = 2
    w_damping = 0
    diff_opt = 1, 1
    km_opt = 4, 4
    diff_6th_opt = 0, 0, 0
    diff_6th_factor = 0.12, 0.12
    base_temp = 290.0
    damp_opt = 3
    zdamp = 5000.0, 5000.0
    dampcoef = 0.2, 0.2
    khdif = 0, 0
    kvdif = 0, 0
/

&bdy_control
    spec_bdy_width = 5
    specified = .true.
/

&namelist_quilt
/

完成后,依次运行 Real 和 WRF。
在这里插入图片描述

查看模拟结果

点击菜单:Visualize Output
打开文件:wrfout_d01_2018-07-15_12_00_00

在这里插入图片描述

可以:

  • 切换显示变量(如温度、风速等)
  • 切换时间步长
  • 双击图层自定义颜色方案(在“Symbology”中)

在这里插入图片描述

参考

基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明,该项目是个人毕设项目,答辩评审分达到98分,代码都经过调试测试,确保可以运行!欢迎下载使用,可用于小白学习、进阶。该资源主要针对计算机、通信、人工智能、自动化等相关专业的学生、老师或从业者下载使用,亦可作为期末课程设计、课程大作业、毕业设计等。项目整体具有较高的学习借鉴价值!基础能力强的可以在此基础上修改调整,以实现不同的功能。 基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明基于pytorch实现中国交通警察指
内容概要:本文档详细介绍了Python反爬虫技术的各种应对策略,包括基础和高级方法。基础部分涵盖User-Agent伪装、IP代理池、请求频率控制等,其中涉及使用fake_useragent库随机生成User-Agent、设置HTTP/HTTPS代理、通过随机延时模拟正常访问行为。动态页面处理方面,讲解了Selenium和Pyppeteer两种自动化工具的使用,可以用于加载并获取JavaScript渲染后的网页内容。对于验证码问题,提供了OCR识别简单验证码、Selenium模拟滑块验证码操作以及利用第三方平台破解复杂验证码的方法。登录态维持章节介绍了如何通过Session对象保持登录状态,并且演示了Cookie的保存与读取。数据加密对抗部分探讨了JavaScript逆向工程和WebAssembly破解技巧,如使用PyExecJS执行解密脚本。最后,高级反爬绕过策略中提到了WebSocket数据抓取和字体反爬解析,确保能够从各种复杂的网络环境中获取所需数据。 适合人群:有一定Python编程经验,从事数据采集工作的开发人员。 使用场景及目标:①帮助开发者理解并掌握多种反爬虫绕过技术;②为实际项目中的数据抓取任务提供有效的解决方案;③提高爬虫程序的成功率和稳定性。 其他说明:在学习过程中,建议结合具体案例进行实践,同时注意遵守网站的robots协议及相关法律法规,合法合规地进行数据采集活动。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

WW、forever

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值