【数据集】GPM IMERG Daily Precipitation Dataset

数据集概述

Global Precipitation Measurement (GPM) IMERG Daily Precipitation Dataset 简介
Global Precipitation Measurement (GPM) 是由美国国家航空航天局(NASA)和日本宇宙航空研究开发机构(JAXA)联合发起的一项全球降水观测任务。该任务旨在提供高精度的全球降水数据,特别是热带和中纬度地区的降水情况。GPM 任务的核心卫星于 2014 年发射,配备了先进的微波成像仪器,用于全球降水的实时测量。

IMERG(Integrated Multi-satellitE Retrievals for GPM)数据集是 GPM 任务的重要产品之一。IMERG 数据集整合了来自多颗卫星的降水观测数据,提供高时空分辨率的全球降水估算。
在这里插入图片描述

时空分辨率:

  • 空间分辨率:0.1° × 0.1°(大约 11 公里的分辨率),覆盖全球60°S 到 60°N 之间的区域。
  • 时间分辨率:IMERG 提供多种时间分辨率的数据,
### 处理GPM每日降水数据的方法和工具 #### 1. 数据获取 为了处理全球降水测量 (GPM) 的每日降水数据,可以从可靠的数据平台下载所需的历史降水量数据。这些平台包括 NOAA、NASA的 GPM 或 ECMWF 等机构提供的资源[^1]。 #### 2. 数据读取与预处理 一旦获得了 GPM 日降雨量数据文件(通常为 HDF5 或 NetCDF 格式),可以使用 Python 中的 `h5py` 和 `netCDF4` 库来加载并解析这些文件: ```python import h5py import netCDF4 as nc def read_hdf5(file_path): with h5py.File(file_path, 'r') as f: data = f['/variable_name'][:] return data def read_netcdf(file_path): dataset = nc.Dataset(file_path) precipitation_data = dataset.variables['precipitation'][:] return precipitation_data ``` #### 3. 数据清洗与转换 对于缺失值或其他异常情况,可能需要进行适当的数据清理工作。这可以通过 Pandas 来实现更方便的操作: ```python import pandas as pd import numpy as np data_df = pd.DataFrame(precipitation_data) # 替换 NaN 值 data_df.fillna(0, inplace=True) # 转换单位(如果必要) data_df *= conversion_factor ``` #### 4. 可视化分析 利用 Matplotlib 或 Seaborn 进行简单的可视化可以帮助理解数据特征。此外,在特定情况下也可以考虑采用高级绘图库如 Plotly Express 提供交互式的图表展示功能[^2]。 ```python import matplotlib.pyplot as plt import seaborn as sns plt.figure(figsize=(10, 6)) sns.lineplot(data=data_df.mean(axis=1), label='Average Daily Precipitation') plt.title('Daily Average Rainfall Over Time') plt.xlabel('Date Index') plt.ylabel('Precipitation (mm)') plt.show() ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

WW、forever

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值