十大算法之马踏棋盘

在这里插入图片描述
马踏棋盘游戏代码实现
马踏棋盘问题(骑士周游问题)实际上是图的深度优先搜索(DFS)的应用。

如果使用回溯(就是深度优先搜索)来解决,假如马儿踏了53个点,如图:走到了第53个,坐标(1,0),发现已经走到尽头,没办法,那就只能回退了,查看其他的路径,就在棋盘上不停的回溯…… ,思路分析+代码实现

分析第一种方式的问题,并使用贪心算法(greedyalgorithm)进行优化。解决马踏棋盘问题.
使用前面的游戏来验证算法是否正确。

骑士周游问题的解决步骤和思路

  1. 创建棋盘 chessBoard , 是一个二维数组
  2. 将当前位置设置为已经访问,然后根据当前位置,计算马儿还能走哪些位置,并放入到一个集合中(ArrayList), 最多有8个位置, 每走一步,就使用step+1
  3. 遍历ArrayList中存放的所有位置,看看哪个可以走通 , 如果走通,就继续,走不通,就回溯.
  4. 判断马儿是否完成了任务,使用 step 和应该走的步数比较 , 如果没有达到数量,则表示没有完成任务,将整个棋盘置0

注意:马儿不同的走法(策略),会得到不同的结果,效率也会有影响(优化)

//创建一个Point
Point p1 = new Point();
if((p1.x = curPoint.x - 2) >= 0 && (p1.y = curPoint.y -1) >= 0) {
ps.add(new Point(p1));
}

使用贪心算法对原来的算法优化
1。 我们获取当前位置,可以走的下一个位置的集合
//获取当前位置可以走的下一个位置的集合
ArrayList ps = next(new Point(column, row));
2. 我们需要对 ps 中所有的Point 的下一步的所有集合的数目,进行非递减排序,就ok ,
9, 7, 6, 5, 3, 2 , 1 //递减排序
1, 2, 3, 4,5,6, 10, //递增排序

1, 2, 2, 2, 3,3, 4, 5, 6 // 非递减
9, 7, 6,6, 6, 5,5, 3, 2 , 1 //非递增

public class HorseChessBoard {

    public static final int X = 8;
    public static final int Y = 8;

    public static boolean[] visited = new boolean[X * Y];
    public static boolean finished = false;

    public static void main(String[] args) {
        long start = System.currentTimeMillis();
        int[][] chessBoard = new int[X][Y];
        traversalChessBoard(chessBoard, 0, 0, 1);
        System.out.println("cost" + (System.currentTimeMillis() - start) + "ms");
        for (int i = 0; i < chessBoard.length; i++) {
            System.out.println(Arrays.toString(chessBoard[i]));
        }
    }

    /**
     * 马踏棋盘算法
     *
     * @param chessBoard 棋盘
     * @param row        行
     * @param column     列
     * @param step       步
     */
    public static void traversalChessBoard(int[][] chessBoard, int row, int column, int step) {
        chessBoard[row][column] = step;
        // 行列都是从0开始,所以+column时不用减一
        visited[Y * row + column] = true;
        // 列相当于point的x,row相当于point的y
        ArrayList<Point> next = next(new Point(column, row));
        // 此处使用贪心算法,优先走下一步可选路径少的,这样可以减少回溯的步骤,对下一步的路径个数进行非递减排序
        next.sort((o1, o2) -> {
            int size1 = next(o1).size();
            int size2 = next(o2).size();
            if (size1 < size2) {
                return -1;
            } else if (size1 == size2) {
                return 0;
            } else {
                return 1;
            }
        });
        while (!next.isEmpty()) {
            Point p = next.remove(0);
            // 改点没被访问
            if (!visited[p.y * Y + p.x]) {
                // 递归访问该点
                traversalChessBoard(chessBoard, p.y, p.x, step + 1);
            }
        }
        // 判断马儿是否完成了任务,使用   step 和应该走的步数比较 ,
        // 如果没有达到数量,则表示没有完成任务,将整个棋盘置0
        // 说明: step < X * Y  成立的情况有两种
        // 1. 棋盘到目前位置,仍然没有走完
        // 2. 棋盘处于一个回溯过程
        if (step < X * Y && !finished) {
            chessBoard[row][column] = 0;
            visited[row * Y + column] = false;
        } else {
            finished = true;
        }
    }

    /**
     * 获取下一步可走路径的集合
     *
     * @param point
     * @return
     */
    public static ArrayList<Point> next(Point point) {

        ArrayList<Point> list = new ArrayList<>();
        Point p1 = new Point();
        // 5号位
        if ((p1.x = point.x - 2) >= 0 && (p1.y = point.y - 1) >= 0) {
            list.add(new Point(p1));
        }
        // 6号位
        if ((p1.x = point.x - 1) >= 0 && (p1.y = point.y - 2) >= 0) {
            list.add(new Point(p1));
        }
        // 7号位
        if ((p1.x = point.x + 1) < X && (p1.y = point.y - 2) >= 0) {
            list.add(new Point(p1));
        }
        // 0号位
        if ((p1.x = point.x + 2) < X && (p1.y = point.y - 1) >= 0) {
            list.add(new Point(p1));
        }
        // 1号位
        if ((p1.x = point.x + 2) < X && (p1.y = point.y + 1) < Y) {
            list.add(new Point(p1));
        }
        // 2号位
        if ((p1.x = point.x + 1) < X && (p1.y = point.y + 2) < Y) {
            list.add(new Point(p1));
        }
        // 3号位
        if ((p1.x = point.x - 1) >= 0 && (p1.y = point.y + 2) < Y) {
            list.add(new Point(p1));
        }
        // 4号位
        if ((p1.x = point.x - 2) >= 0 && (p1.y = point.y + 1) < Y) {
            list.add(new Point(p1));
        }
        return list;
    }
}

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
问题描述:将马随机放在国际象棋的 8X8 棋盘中的某个方格中 马按走棋规则进行移动 要求每个方格上只进入一次 走遍棋盘上全部 64 个方格 编制递归程序 求出马的行走路线 并按求出的行走路线 将数字 1 2 … 64 依次填入 8X8 的方阵输出之 测试数据:由读者指定可自行指定一个马的初始位置 实现提示:每次在多个可走位置中选择一个进行试探 其余未曾试探过的可走位置必须用适当结构妥善管理 以备试探失败时的“回溯”悔棋使用 并探讨每次选择位置的“最佳策略” 以减少回溯的次数 背景介绍: 国际象棋为许多令人着迷的娱乐提供了固定的框架 而这些框架常独立于游戏本身 其中的许多框架都基于骑士奇异的L型移动规则 一个经典的例子是骑士漫游问题 从十八世纪初开始 这个问题就引起了数学家和解密爱好者的注意 简单地说 这个问题要求从棋盘上任一个方格开始按规则移动骑士 使之成功的游历国际象棋棋盘的64个方格 且每个方格都接触且仅接触一次 可以用一种简便的方法表示问题的一个解 即将数字1 64按骑士到达的顺序依次放入棋盘的方格中 一种非常巧妙的解决骑士漫游地方法由J C Warnsdorff于1823年给出 他给出的规则是:骑士总是移向那些具有最少出口数且尚未到达的方格之一 其中出口数是指通向尚未到达方格的出口数量 在进一步的阅读之前 你可以尝试利用Warnsdorff规则手工构造出该问题的一个解 实习任务: 编写一个程序来获得马踏棋盘即骑士漫游问题的一个解 您的程序需要达到下面的要求: 棋盘的规模是8 8; 对于任意给定的初始化位置进行试验 得到漫游问题的解; 对每次实验 按照棋盘矩阵的方式 打印每个格被行径的顺序编号 技术提示: 解决这类问题的关键是考虑数据在计算机中的存储表示 可能最自然的表示方法就是把棋盘存储在一个8 8的二维数组board中 以 x y 为起点时骑士可能进行的八种移动 一般来说 位于 x y 的骑士可能移动到以下方格之一: x 2 y+1 x 1 y+2 x+1 y+2 x+2 y+1 x+2 y 1 x+1 y 2 x 1 y 2 x 2 y 1 但请注意 如果 x y 的位置离某一条边较近 有些可能的移动就会把骑士移到棋盘之外 而这当然是不允许的 骑士的八种可能的移动可以用一个数组MoveOffset方便地表示出来: MoveOffset[0] 2 1 MoveOffset[1] 1 2 MoveOffset[2] 1 2 MoveOffset[3] 2 1 MoveOffset[4] 2 1 MoveOffset[5] 1 2 MoveOffset[6] 1 2 MoveOffset[7] 2 1 于是 位于 x y 的骑士可以移动到 x+MoveOffset[k] x y+MoveOffset[k] y 其中k是0到7之间的某个整数值 并且新方格必须仍位于棋盘上 扩展需求:可以考虑将结果图形化 b 考察所有初始化的情况 测试是否都能够得到解 ">问题描述:将马随机放在国际象棋的 8X8 棋盘中的某个方格中 马按走棋规则进行移动 要求每个方格上只进入一次 走遍棋盘上全部 64 个方格 编制递归程序 求出马的行走路线 并按求出的行走路线 将数字 1 2 … 64 依 [更多]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值