马踏棋盘问题 — 深搜和贪心算法

本文介绍了马踏棋盘问题,即如何使用深度优先搜索(DFS)和贪心算法在8*8的国际象棋棋盘上让马走遍所有方格。深度优先搜索虽然能解决问题但效率低,而贪心算法通过选择后续节点最少的路径,提高了搜索效率。文中还提及了在5*5棋盘上不同初始位置的影响。
摘要由CSDN通过智能技术生成

同学面试阿里,被问到了马踏棋盘的问题,作为非计算机专业的门外汉,完全没有听说过,只听说过马踏飞燕。抓紧去搜了一下,发现还是个经典算法,题目是这样的:

国际象棋的棋盘为8*8的方格棋盘。现将”马”放在任意指定的方格中,按照”马”走棋的规则将”马”进行移动。要求每个方格只能进入一次,最终使得”马”走遍棋盘的64个方格。

这个问题一般有两种思路来解决,一种就是用深度优先搜索,采用递归+回溯的方式,一个棋盘可以看成有64层深度的一棵树,每一个节点最多有8个子节点,采用深搜可以很方便的解决这个问题,但是深搜这个方法时间复杂度太高了,最多要搜8^64次(实际存在边界和已经访问的标记,虽然不会这么多次,也是很大),太过盲目;

还有一种方式就是采用贪心算法,每次选择下一步的时候,不像深搜那样,每次都沿着一圈8个方向顺序搜,瞎眼走到黑,而是采用贪心算法,选择眼前认为最优的点。这里什么是最优的点,就是选择后续节点最少的那一个,哪一个点的下一步少,就选哪一个。基于贪心算法可以快速的得搜索到结果,效率提高很多。

下面是自己调试的代码,采用递归的深搜算法和在此基础上改进的贪心算法:

#include <iostream>
#include <vector>
using namespace std;
int move_x[8] = { 1, 2, 2, 1, -1, -2, -2, -1 }; 
int move_y[8] = { 2, 1, -1, -2, -2, -1, 1, 2 };

void Judge(vector<vector<int>>& pan, vector<vector<int>>& flag, vector<vector<int>>& path, int m, int n, int& edge, int count, int& found)
{
    if (found) 
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值