首先复习一下在 x 0 x_0 x0处的泰勒展开式和长除法:
f ( x ) = ∑ i = 0 n f ( i ) ( x 0 ) ( x − x 0 ) i i ! f(x)=\sum_{i=0}^n \frac{f^{(i)}(x_0)(x-x_0)^i}{i!} f(x)=i=0∑ni!f(i)(x0)(x−x0)i
假设要求 f ( x ) = 2 x 3 + 5 x 2 − 3 x + 6 f(x)=2x^3+5x^2-3x+6 f(x)=2x3+5x2−3x+6在2点处的泰勒展开式:
- 将3带入泰勒展开公式:
f ( x ) = 36 + 41 ( x − 2 ) + 17 ( x − 2 ) 2 + 2 ( x − 2 ) 3 f(x)=36+41(x-2)+17(x-2)^2+2(x-2)^3 f(x)=36+41(x−2)+17(x−2)2+2(x−2)3 - 利用长除法:
由此可得:
f
(
x
)
=
(
x
−
2
)
{
(
x
−
2
)
[
2
(
x
−
2
)
+
17
]
+
41
}
+
36
=
36
+
41
(
x
−
2
)
+
17
(
x
−
2
)
2
+
2
(
x
−
2
)
3
f(x)=(x-2)\{(x-2)[2(x-2)+17]+41\}+36\\ =36+41(x-2)+17(x-2)^2+2(x-2)^3
f(x)=(x−2){(x−2)[2(x−2)+17]+41}+36=36+41(x−2)+17(x−2)2+2(x−2)3
- 综合除法:
由此可得:
f
(
x
)
=
2
(
x
−
2
)
3
+
17
(
x
−
2
)
2
+
41
(
x
−
3
)
+
36
f(x)=2(x-2)^3+17(x-2)^2+41(x-3)+36
f(x)=2(x−2)3+17(x−2)2+41(x−3)+36