多项式除法终极方法:长除法 VS 综合除法

首先复习一下在 x 0 x_0 x0处的泰勒展开式和长除法:

f ( x ) = ∑ i = 0 n f ( i ) ( x 0 ) ( x − x 0 ) i i ! f(x)=\sum_{i=0}^n \frac{f^{(i)}(x_0)(x-x_0)^i}{i!} f(x)=i=0ni!f(i)(x0)(xx0)i

假设要求 f ( x ) = 2 x 3 + 5 x 2 − 3 x + 6 f(x)=2x^3+5x^2-3x+6 f(x)=2x3+5x23x+6在2点处的泰勒展开式:

  1. 将3带入泰勒展开公式
    f ( x ) = 36 + 41 ( x − 2 ) + 17 ( x − 2 ) 2 + 2 ( x − 2 ) 3 f(x)=36+41(x-2)+17(x-2)^2+2(x-2)^3 f(x)=36+41(x2)+17(x2)2+2(x2)3
  2. 利用长除法在这里插入图片描述

由此可得:
f ( x ) = ( x − 2 ) { ( x − 2 ) [ 2 ( x − 2 ) + 17 ] + 41 } + 36 = 36 + 41 ( x − 2 ) + 17 ( x − 2 ) 2 + 2 ( x − 2 ) 3 f(x)=(x-2)\{(x-2)[2(x-2)+17]+41\}+36\\ =36+41(x-2)+17(x-2)^2+2(x-2)^3 f(x)=(x2){(x2)[2(x2)+17]+41}+36=36+41(x2)+17(x2)2+2(x2)3

  1. 综合除法

在这里插入图片描述
由此可得:
f ( x ) = 2 ( x − 2 ) 3 + 17 ( x − 2 ) 2 + 41 ( x − 3 ) + 36 f(x)=2(x-2)^3+17(x-2)^2+41(x-3)+36 f(x)=2(x2)3+17(x2)2+41(x3)+36

综上可知:综合除法复杂度大大小于长除法!!

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值