论文阅读——SimCLR:A Simple Framework for Contrastive Learning of Visual Representations

SimCLR是一种无监督学习方法,通过数据增强产生负样本进行对比学习。每个batch内,同一图片的两个增强版本作为正样本,其余为负样本。经过网络f和MLP的投影操作,计算对比损失,使相同图片的增强版本接近,不同图片远离。训练过程中,MLP仅辅助计算loss,最终模型不包含MLP。
摘要由CSDN通过智能技术生成

SimCLR论文总结:

构建负样例的方式在对比学习中很重要。主要探究了图像变换、batchsize对于学习到的表示的影响。
构造负样本的方法是通过两次数据增强,产生2N-2个负样本
具体流程:
假设每个batch中有两张图片(dog和chair),以dog为例

  • 对一张dog进行随机增强,产生两张图像
  • 这两张增强之后的图像送到网络f中,在这里产生一个特征向量h
  • h经过MLP(一个全连接网络)也就是投影操作g,产生z
  • z用于计算对比loss
  • 想要的表示是h,最终的特征提取器是f

注意的是:

  • 在最终使用的时候,MLP是舍弃的,实验发现在训练过程中,通过z计算loss获得的h更好,MLP仅仅是个辅助训练的过程
  • 上述过程是无监督的
  • 损失函数需要完成的两件事,一是令两张增强之后的dog图像距离近,二是令dog和chair的距离足够远(“同性相吸,异性相斥”)

参考链接:
https://zhuanlan.zhihu.com/p/142951091
https://zhuanlan.zhihu.com/p/258958247

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值