常见优化器(Optimizer)及选取经验

优化器选取经验

对于大多数情况,Adam 或其变体是一个很好的选择。它通常具有快速的收敛速度和较好的性能。

如果数据集很大,则 SGD 或 Mini-batch SGD 可能更合适。这是因为它们可以更好地处理大量数据,且计算成本较低。

如果模型具有很多局部最小值或鞍点,则动量优化器或其变体(如Nadam或AMSGrad)可能更好,因为它们可以在这些情况下提高稳定性。

如果您的目标是最小化训练期间的误差,并且您不关心训练后的泛化误差,则可以尝试使用更复杂的优化器,如L-BFGS。

如果您处理的是序列数据,则可以尝试使用自适应优化器,如RMSprop或Adagrad,因为它们可以更好地处理时间序列数据的稀疏性。

常见的优化器及其常用的任务类型

梯度下降法(Gradient Descent):梯度下降法是最常用的优化器之一,它被广泛应用于各种类型的深度学习任务中,包括分类、回归和语音识别等。

随机梯度下降法(Stochastic Gradient Descent,SGD):SGD 是一种梯度下降法的变体,它每次更新只考虑一个随机子集的数据,因此在处理大规模数据集时具有优势。它通常被用于图像分类和语音识别等任务。

动量优化器(Momentum Optimizer):动量优化器是一种在梯度下降法基础上添加动量的优化器,可以加速收敛速度并增加稳定性,通常用于处理非凸优化问题。

自适应梯度算法(Adaptive Gradient Algorithms):自适应梯度算法是一类基于梯度信息自适应调整学习率的优化器,包括 AdaGrad、Adadelta 和 RMSprop 等。这些优化器通常被用于处理稀疏数据或非平稳目标函数等问题。

自适应矩估计(Adam):Adam 是一种基于动量优化器和自适应梯度算法的结合,具有较快的收敛速度和较好的鲁棒性,通常被用于训练深度神经网络。

拉普拉斯近似牛顿法(L-BFGS):L-BFGS 是一种基于牛顿法的优化器,通过近似牛顿矩阵进行更新,具有快速收敛速度和较好的准确性,通常被用于处理小规模数据和非凸优化问题。

怎样选取优化器

任务类型:优化器的选择应该根据具体任务的类型进行决策。例如,对于图像分类问题,通常使用Adam或其变体;对于序列数据,RMSprop和Adagrad可能更适合。

模型架构:模型的架构对优化器的选择也有影响。例如,对于卷积神经网络,通常使用Adam或SGD;对于循环神经网络,RMSprop和Adagrad可能更适合。

数据集大小:数据集的大小对优化器的选择也有影响。对于小数据集,L-BFGS可能更合适,因为它可以更快地收敛并提供更准确的结果。对于大数据集,SGD和其变体(如Mini-batch SGD)通常更合适。

计算资源:选择优化器还应考虑可用的计算资源。例如,如果计算资源有限,则应该避免使用需要大量计算的优化器(例如L-BFGS),而应该使用更轻量级的优化器(例如SGD或Adam)。

实验和评估:最后,需要进行实验和评估来确定哪种优化器最适合您的问题。您可以尝试不同的优化器,并比较它们的训练速度、收敛速度和准确度等指标,以找到最佳的选择。

### 优化器机器学习深度学习中的角色 优化器机器学习深度学习模型训练过程中不可或缺的一部分,用于最小化或最大化某个目标函数。具体来说,在监督学习场景下,优化器通过调整模型参数来减少损失函数的值,从而提高模型对未来数据的预测能力。 #### 常见类型的优化器及其特点 1. **梯度下降法(Gradient Descent, GD)** 这是最基础的一种优化方法,适用于凸优化问题。GD按照负梯度方向更新权重,逐步逼近全局最优解的位置。然而对于大规模的数据集而言,每次迭代都需要遍历全部样本计算梯度,效率较低[^4]。 2. **随机梯度下降法(Stochastic Gradient Descent, SGD)** 随机选取单个样本来估计整体梯度并据此更新参数,大大加快了收敛速度;但是由于每步仅依赖于单一实例,路径可能较为曲折不稳定。SGD因其简单性和高效性成为实践中广泛采用的方法之一。 3. **批量梯度下降法(Batch Gradient Descent, BGD)** 类似于标准的梯度下降法,不同之处在于BGD会在每个epoch结束时利用所有训练样本重新计算一次完整的梯度再做更新操作。这种方法虽然能够获得更精确的方向指引,但由于内存占用较大以及耗时较长而较少被单独使用。 4. **动量优化器(Momentum Optimizer)** 动量机制引入了一个累积历史梯度的概念,使得当前时刻的速度不仅取决于当前位置处的斜率大小,还受到之前运动状态的影响。这有助于加速沿着某些维度上的移动,并帮助逃离局部极小值区域。 5. **AdaGrad自适应学习率优化器** AdaGrad针对不同的特征赋予差异化的学习速率,即频繁变化的部分给予较小的学习步长,反之则增大步伐前进。这种策略非常适合处理稀疏数据分布的任务,如自然语言处理等领域。 6. **Adam优化器** Adam结合了RMSProp与Momentum的优点,既考虑到了过去平方梯度均值又兼顾了一阶矩估计,实现了更加稳健和平滑的参数更新过程。目前已经成为众多框架默认配置的选择对象。 7. **Adadelta优化器** Adadelta改进了AdaGrad存在的一个问题——随着时间增长不断衰减的学习率可能导致后期几乎停止不前的现象。它不再显式设定初始学习率而是动态调整窗口内的平均梯度幅度来进行自我调节。 8. **Nesterov Accelerated Gradient (NAG)** Nesterov加速梯度是一种特殊的动量形式,先基于现有动量向前走一小步后再计算新的梯度信息指导下一步行动。这种方式可以提前感知到即将到达的地方是否存在更好的位置,进而做出更为合理的决策。 9. **L-BFGS有限记忆拟牛顿法** L-BFGS属于二阶梯度优化算法家族的一员,能够在不需要存储Hessian矩阵的情况下近似实现二次收敛特性。相比于单纯依靠一阶导数的传统方案,这类方法往往具有更快捷有效的寻优表现。 ```python import torch.optim as optim # 定义几种常见优化器的应用示例 sgd_optimizer = optim.SGD(model.parameters(), lr=0.01) adam_optimizer = optim.Adam(model.parameters(), lr=0.001, betas=(0.9, 0.999)) rmsprop_optimizer = optim.RMSprop(model.parameters(), lr=0.01, alpha=0.99) for input_data, target in training_set: optimizer.zero_grad() # 清除之前的梯度缓存 output = model(input_data) # 计算输出结果 loss = criterion(output, target) # 获取损失值 loss.backward() # 反向传播误差信号 optimizer.step() # 更新模型参数 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

沃洛德.辛肯

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值