什么是训练器(Trainer)和回调函数(Callbacks)?

在机器学习和深度学习框架中,训练器(Trainer)和回调函数(Callbacks)是两个重要的概念,它们在模型训练过程中扮演着关键角色:

训练器(Trainer)

训练器是一个负责整个训练流程的组件。它通常具备以下功能:

  1. 管理训练循环:训练器控制模型的训练过程,包括正向传播、计算损失、反向传播和参数更新。
  2. 调度优化器:训练器负责调用优化器(如SGD、Adam等),根据损失函数计算的梯度来更新模型的参数。
  3. 执行回调:训练器在训练过程中的特定时刻(如每个epoch或batch结束时)调用回调函数。
  4. 评估模型:训练器可以在训练过程中或结束后对模型进行评估,使用验证集或测试集来评估模型性能。
  5. 保存和加载模型:训练器可以保存训练好的模型参数,并在需要时加载这些参数。
  6. 早停:训练器可以实现早停策略,以防止过拟合。

回调函数(Callbacks)

回调函数是训练过程中的钩子,它们允许开发者在训练的特定阶段插入自定义逻辑。常见的回调类型包括:

  1. OnEpochBegin/OnEpochEnd:在每个epoch开始和结束时调用。
  2. OnBatchBegin/OnBatchEnd:在每个batch处理开始和结束时调用。
  3. OnTrainBegin/OnTrainEnd:在整个训练开始和结束时调用。
  4. ModelCheckpoint:在训练过程中定期保存模型的状态,以便可以在中断后恢复训练。
  5. EarlyStopping:监控模型的性能,如果在一定数量的epoch后性能没有改善,则停止训练。
  6. ReduceLROnPlateau:当模型的性能在一定数量的epoch后停止提升时,减少学习率。
  7. TensorBoard:记录训练过程中的各种指标,以便在TensorBoard中可视化。

应用场景

  • 训练器:当你想要自动化整个训练流程时,可以使用训练器。它提供了一种方便的方式来管理训练过程,而无需手动编写训练循环。
  • 回调函数:当你需要在训练过程中插入自定义逻辑,或者想要实现一些高级功能(如早停、学习率调整、模型保存等)时,可以使用回调函数。

通过结合使用训练器和回调函数,可以创建一个灵活且强大的训练流程,以适应不同的训练需求和策略。

这段代码的翻译如下: ``` if not args.two_steps: # 如果参数中没有设置 two_steps,直接进行模型测试 trainer.test() step2_model_checkpoint = pl.callbacks.ModelCheckpoint(monitor="Eval/f1", mode="max", # 定义一个 ModelCheckpoint 回调函数,用于保存第二阶段训练的最佳模型 filename='{epoch}-{Step2Eval/f1:.2f}', dirpath="output", save_weights_only=True ) if args.two_steps: # 如果参数中设置了 two_steps,进行两阶段训练 # 构建第二阶段训练所需的模型与训练器 # 使用 Step2Eval/f1 作为评估指标 lit_model_second = TransformerLitModelTwoSteps(args=args, model=lit_model.model, data_config=data_config) step_early_callback = pl.callbacks.EarlyStopping(monitor="Eval/f1", mode="max", patience=6, check_on_train_epoch_end=False) callbacks = [step_early_callback, step2_model_checkpoint] # 定义回调函数列表,包括 EarlyStopping 和 ModelCheckpoint trainer_2 = pl.Trainer.from_argparse_args(args, callbacks=callbacks, logger=logger, default_root_dir="training/logs", gpus=gpu_count, accelerator=accelerator, plugins=DDPPlugin(find_unused_parameters=False) if gpu_count > 1 else None) # 构建训练器 trainer_2.fit(lit_model_second, datamodule=data) # 进行第二阶段训练 trainer_2.test() # 进行测试 ``` 该代码的功能是进行两阶段训练,如果参数中没有设置 two_steps,则直接进行模型测试;如果设置了 two_steps,则进行第二阶段训练,训练过程中使用 EarlyStopping 和 ModelCheckpoint 回调函数,并进行测试。其中,第二阶段训练使用了一个新的模型。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

沃洛德.辛肯

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值