最简分数(2022-2-10)每日一练

本文介绍如何使用哈希表实现算法,找出所有0到1之间且分母小于等于给定整数n的最简分数列表,通过欧几里得算法检查分数的简化状态。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1447. 最简分数(2022-2-10)

给你一个整数 n ,请你返回所有 0 到 1 之间(不包括 0 和 1)满足分母小于等于 n最简 分数 。分数可以以 任意 顺序返回。

示例 1:

输入:n = 2
输出:[“1/2”]
解释:“1/2” 是唯一一个分母小于等于 2 的最简分数。

示例 2:

输入:n = 3
输出:[“1/2”,“1/3”,“2/3”]

示例 3:

输入:n = 4
输出:[“1/2”,“1/3”,“1/4”,“2/3”,“3/4”]
解释:“2/4” 不是最简分数,因为它可以化简为 “1/2” 。

示例 4:

输入:n = 1
输出:[]

提示:

  • 1 <= n <= 100

解题思路

这里使用暴力枚举,去检验每一种组合是否是最简分数,

而检验方法有很多种,一个是「欧几里得」求最大公约数,如果分子分母的最大公约数为1,则为最简。

另一个是「更相减损法」,也就是互相减,到最后为1则最简。一般在精度要求高的时候使用。

再一种就是使用「哈希表」,来记录每一个最简分数,如果不是最简,那么一定可以在哈希表中找到,比如哈希表中有1/2,那么2/4明显等于1/2,那它就不是最简。

而下面的代码是「哈希表」的实现:

var simplifiedFractions = function(n) {
    //分子小于分母
    //分母与分子没有公因数 
  let hash = new Map(),ret = []
  for(let j = 1; j <= n;j++){
    for(let i = 1; i < j; i++){
    	let _t = i/j
      if(!hash.get(_t)){
        ret.push(`${i}/${j}`)
        hash.set(_t,`${i}/${j}`)
      }
    }
  } 
  return ret
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值