688. 骑士在棋盘上的概率(2022-2-17)
在一个 n x n
的国际象棋棋盘上,一个骑士从单元格 (row, column)
开始,并尝试进行 k
次移动。行和列是 从 0 开始 的,所以左上单元格是 (0,0)
,右下单元格是 (n - 1, n - 1)
。
象棋骑士有8种可能的走法,如下图所示。每次移动在基本方向上是两个单元格,然后在正交方向上是一个单元格。
每次骑士要移动时,它都会随机从8种可能的移动中选择一种(即使棋子会离开棋盘),然后移动到那里。
骑士继续移动,直到它走了 k
步或离开了棋盘。
返回 骑士在棋盘停止移动后仍留在棋盘上的概率 。
示例 1:
输入: n = 3, k = 2, row = 0, column = 0
输出: 0.0625
解释: 有两步(到(1,2),(2,1))可以让骑士留在棋盘上。
在每一个位置上,也有两种移动可以让骑士留在棋盘上。
骑士留在棋盘上的总概率是0.0625。
示例 2:
输入: n = 1, k = 0, row = 0, column = 0
输出: 1.00000
提示:
1 <= n <= 25
0 <= k <= 100
0 <= row, column <= n
解题思路
刚开始看到这种地图,走路的问题,没有多思考,直接就去使用了BFS,残酷的事实是「超时」。然后换了个思路,DFS的话其实是可以的,但是没有写。因为发现动态规划才是正解。(搜索其实算是朴素模拟算法)
此题为典型的动态规划题,也就是「DP」。
「动态规划」:通过把原问题分解为相对简单的子问题的方式求解复杂问题的方法。当一个问题可以分解为重叠子问题,并且具有最优子结构时,就可以使用「动态规划」。「动态规划」方法所耗时间往往远少于朴素解法。
——维基百科
本题可以分解:🐎每次移动有八个方向,每个方向就是1/8
。我们去记录棋盘中每一格上有🐎概率。「当走到第k步,[row,column]
位置时,其实是k-1步时的八个方向上的🐎使用了1/8
的概率选择到[row,column]
的。」
上述过程其实就是重叠子问题,继续推导k步时其余每个格子的概率,之后时k-1步时每个格子的概率……一直到第0步,每个格子的概率其实是1(因为开始时,没有移动,棋盘内必有🐎,但是我们要计算每个格子的概率,所以每个格子的概率其实是1。)
这样子从0推导到k就可以求出每个格子上存在🐎的概率
const direction = [
[-2, -1],
[-1, -2],
[2, -1],
[1, -2],
[-2, 1],
[-1