骑士在棋盘上的概率(2022-2-17)每日一练(动态规划)

本文介绍了如何解决688题-骑士在棋盘上的概率,通过动态规划方法,讨论了如何计算骑士留在棋盘上的概率,并提到了滚动数组优化和动态规划与BFS结合的可能性。
摘要由CSDN通过智能技术生成

688. 骑士在棋盘上的概率(2022-2-17)

在一个 n x n 的国际象棋棋盘上,一个骑士从单元格 (row, column) 开始,并尝试进行 k 次移动。行和列是 从 0 开始 的,所以左上单元格是 (0,0) ,右下单元格是 (n - 1, n - 1)

象棋骑士有8种可能的走法,如下图所示。每次移动在基本方向上是两个单元格,然后在正交方向上是一个单元格。

img

每次骑士要移动时,它都会随机从8种可能的移动中选择一种(即使棋子会离开棋盘),然后移动到那里。

骑士继续移动,直到它走了 k 步或离开了棋盘。

返回 骑士在棋盘停止移动后仍留在棋盘上的概率

示例 1:

输入: n = 3, k = 2, row = 0, column = 0
输出: 0.0625
解释: 有两步(到(1,2),(2,1))可以让骑士留在棋盘上。
在每一个位置上,也有两种移动可以让骑士留在棋盘上。
骑士留在棋盘上的总概率是0.0625。

示例 2:

输入: n = 1, k = 0, row = 0, column = 0
输出: 1.00000

提示:

  • 1 <= n <= 25
  • 0 <= k <= 100
  • 0 <= row, column <= n

解题思路

刚开始看到这种地图,走路的问题,没有多思考,直接就去使用了BFS,残酷的事实是「超时」。然后换了个思路,DFS的话其实是可以的,但是没有写。因为发现动态规划才是正解。(搜索其实算是朴素模拟算法)

此题为典型的动态规划题,也就是「DP」。

「动态规划」:通过把原问题分解为相对简单的子问题的方式求解复杂问题的方法。当一个问题可以分解为重叠子问题,并且具有最优子结构时,就可以使用「动态规划」。「动态规划」方法所耗时间往往远少于朴素解法。

——维基百科

本题可以分解:🐎每次移动有八个方向,每个方向就是1/8。我们去记录棋盘中每一格上有🐎概率。「当走到第k步,[row,column]位置时,其实是k-1步时的八个方向上的🐎使用了1/8的概率选择到[row,column]的。」

上述过程其实就是重叠子问题,继续推导k步时其余每个格子的概率,之后时k-1步时每个格子的概率……一直到第0步,每个格子的概率其实是1(因为开始时,没有移动,棋盘内必有🐎,但是我们要计算每个格子的概率,所以每个格子的概率其实是1。)

这样子从0推导到k就可以求出每个格子上存在🐎的概率

const direction = [
  [-2, -1],
  [-1, -2],
  [2, -1],
  [1, -2],
  [-2, 1],
  [-1
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值