平面上N个点,求斜率最大的那条直线通过的两点

平面上N个点,每两个点都确定一条直线,求出斜率最大的那条直线所通过的两个点(斜率不存在的情况不考虑)。时间效率越高越好。
关于这道题,网上已经给出了解答要点:
3个点A,B,C,把它们的按x坐标排序。假设排序后的顺序是ABC,那么有两种情况:

1.ABC共线,则k(AB)=k(BC)=k(AC)
2.ABC不共线,则ABC将形成一个三角形,那么k(AC)<max(k(AB), k(BC))

其中k()表示求斜率。
所以程序的基本步骤就是:

1.把N个点按x坐标排序。
2.遍历,求相邻的两个点的斜率,找最大值。

时间复杂度Nlog(N)。

#include<stdio.h>
#include<stdlib.h>

int cmp(const void *a,const void *b)
{
	return(*(int *)a-*(int *)b);
}



int main()
{
	float k1=0.0,k2=0.0;
	int n,i;
	float maxk=0.0;
	int x1,x2,y1,y2;
	int x[100002]={0};
	int y[100002]={0};
	scanf("%d",&n);
	for(i=0;i<n;i++)
	{
		scanf("%d",&x[i]);
		scanf("%d",&y[i]);
	}
	
	qsort(x,n,sizeof(x[1]),cmp);	
	maxk=(y[1]-y[0])/(x[1]-x[0]);
	x1=x[0];x2=x[1];y1=y[0];y2=y[1];
	
	for(i=0;i<n-1;i++)
	{
		k1=(y[i+1]-y[i])/(x[i+1]-x[i]);
		
		if(k1>maxk)
		{
			x1=x[i];
			x2=x[i+1];
			y1=y[i];
			y2=y[i+1];
			maxk=k1;
		}
	} 
	printf("(%d,%d) (%d,&d)\n",x1,y1,x2,y2);
	return 0;
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值