哈希表的相关知识点

1.哈希表是什么

哈希表的诞生:在哈希表出现之前,查找数据都是通过比较来查找到,效率太慢了,有没有一种方法是不经过任何比较,一次就查找到所查的数据?

  • 线性表、树

    线性表、树 这些结构中,记录 在结构 中的相对位置是随机的,和记录的关键字之间不存在确定关系,因此,在结构中查找时需要进行一系列和关键字的比较。这一类查找方法建立在“比较”的基础上。在顺序查找时,比较的结果为“=”与“≠”2种可能;在折半查找、二叉排序树查找和B-树查找时,比较的结果为“<”“=”“>”3种可能。查找的效率依赖于查找过程中所进行的比较次数。

  • 哈希表

    理想的情况是希望不经过任何比较,一次存取便能得到所查记录,那就必须在记录的存储位置和它的关键字之间建立一个确定的关系,使每个关键字和结构中一个唯一的存储位置相对应。因而在查找时,只要根据这个对应关系找到给定值的像。若结构中存在关键字和相等的记录,则必定在的存储位置上,反之在这个位置上没有记录。由此,不需要比较便可直接取得所查记录。在此,我们称这个对应关系为哈希(Hash)函数 ,按这个思想建立的表为哈希表 。

    (插播:注意“理想情况”这几个字~~ 这会在后文给出解释)

这是《数据结构(C语言版)》[1]中引出哈希表的一段描述,通俗易懂。所以,我们知道了什么是哈希函数 和哈希表 。

2.HashMap的使用

使用哈希表前需导入相关的包

import java.util.HashMap;

创建一个HashMap对象,存储的是双列表数据,键值对key-value

HashMap<key,value> hm = new HashMap<>();

hm 为HashMap的变量名

<key,value> 为HashMap存储的双队列
key-value 可以为任意的Object对象的类型
如 Integer(整数),String(字符串),Charcter(字符)

Hash表中的存储数据

hm.put(key,value)

hm为HashMap的名字

hm.size() 返回Hash表中元素的数量

举例:

package hashmap;

import java.util.HashMap;

public class hashmap {
    public static void main(String[] args) {
        //创建一个HashMap对象:存储的是双列表数据,键值对 key-value
        HashMap<Integer,String> hm = new HashMap<>();
        //在jdk17后,后面的<>不必和前面的<Integer,String>一样了,省去了编写的过程
        //存储数据
        hm.put(12,"zcj");
        hm.put(7,"asdf");
        hm.put(1,"aoin");
        hm.put(7,"oain");

        System.out.println("集合中的元素"+hm/*.toString()*/);
        //通过.toString 将hm中的值输出
        System.out.println("集合中元素的数量"+hm.size());

    }
}

注意事项:

当两个值的key相同时会出现什么情况?

上述代码的运行结果,明明我们给它赋值了四个元素,但hash表中只有三个

由结果我们可以得出:当两个key相同时,后面的value会将前面的value给覆盖掉,并将前面的value作为返回值返回

示例如下:

package hashmap;

import java.util.HashMap;

public class hashmap {
    public static void main(String[] args) {
        //创建一个HashMap对象:存储的是双列表数据,键值对 key-value
        HashMap<Integer,String> hm = new HashMap<>();
        //在jdk17后,后面的<>不必和前面的<Integer,String>一样了,省去了编写的过程
        //存储数据
        System.out.println(hm.put(12, "zcj"));
        System.out.println(hm.put(7, "asdf"));
        System.out.println(hm.put(1, "aoin"));
        System.out.println(hm.put(7, "oain"));
        System.out.println("集合中的元素"+hm/*.toString()*/);
        //通过.toString 将hm中的值输出
        System.out.println("集合中元素的数量"+hm.size());

    }
}

运行结果: 

 asdf是前面的value,oain是后面的value

由结果可以看出,后面存储的value(oain)将前面存储的value(asdf)覆盖掉,并将asdf返回

如果后面的value没有将前面的value覆盖掉,则放入hash表中,返回为null

也可以得出如下结论:key的值唯一

3.哈希表的底层原理

以key = int为例

1.确定好存储的数据

2.调用hashCode方法计算出哈希码

3.调用另一个算法根据hash码计算出数据放在主数组中的哪个位置

主数组:hash表中的底层数组,用来存储数据

存储数据的类为Entry类,因此数组的类型也是Entry[],

Entry类:key,value,根据key计算出来的hash码,下一个元素的地址

 注意:哈希碰撞

哈希碰撞就是两个值的存储地址相同的时候,如下

1.两个key相同

hm.put(1,"a")
hm.put(1,"b")

两个key-value的key相同,因此根据key计算出来的存放位置也相同

哈希碰撞结果:b将a替换掉,其他的三个数据不变

2.两个key不同,但是算出来的存放位置相同

hm.put(1,"a")
hm.put(22,"b")

这两个key-value的在主数组中存放的位置都是4(元素的下标)

此时,需要判断,(22,“b")放在(1,“a")前还是后

口诀:七上八下

jdk7对应的源码往上插,jdk8对应的往下插

举例:以往上查为例

假设(1,”a")封装后的地址为0x99,则主数组4存储的数据就是0x99

在(22,“b")封装的地址为0x77,且存储位置为4

此时,发生了哈希碰撞,主数组存储的数据0x99变为0x77,封装好的(22,”b")中的指向下一个元素的地址变为0x99

如图:

 由图也可以看出

哈希表 = 数组 + 链表(数据结构的逻辑结构)

4.哈希表的一些重要属性

主数组的默认长度

static final int DEFAULT_INITIAL_CAPACITY = 16;默认长度为16

主数组最大长度

static final int MAXIMUM_CAPACITY = 1 << 30;

2的30次方

负载因子

static final float DEFAULT_LOAD_FACTOR = 0.75f;
定义了一个值:0.75f 负载因子
也可以叫做加载因子

主数组的定义

transient Entry<K,V>[] table;//底层的主数组

数组扩容的边界值

int threshosd;

定义了一个变量,没赋值默认为0
这个变量是用来表示数组扩容的边界值

装填因子

float float loadFactor;

用来接受 负载因子/加载因子

添加的元素的数量

transient int size;

5.HashMap的构造器

源码:

空构造器:

public HashMap(){
    this(DEFAULT_INITIAL_CAPACITY,DEFAULT_LOAD_FACTOR)
}

DEFAULT_INITIAL_CAPACITY : 16
DEFAULT_LOAD_FACTOR : 0.75f

带参数构造器(删除抛出异常后的源码) 

确定容量: 

int capacity = 1;
while(capacity < initialCapacity)
    capacity <<= 1;

capacity:容量
capacity的最终结果为2的n次幂

确定负载因子: 

this.loadFactor = loadFactor;
threshold = (int) Math.min(capacity * loadFactor , MAXIMUM_CAPACITY + 1);

// threshold = 16 * 0.75 = 12
// 12-->数组扩容的边界值

创建数组

table = new Entry[capacity];//创建主数组,长度为16,类型为Entry

下面两行不重要
useAltHashing = sun.misc.VM.isBooted() && (capacity >= Holder.ALTERNATIVE_HASHING_THRESHOLD);
init();

6.HashMap的put方法

put源码:

 hash值的算法

通过二次散列的方式尽量避免两个不同的key存放的位置相同 ,解决hash冲突

扰动函数中具体的值,如20,12,都是通过统计学得出来的

 计算位置

 h & (length-1)  == h % length 取余

用 & 运算效率更高

添加元素的方法

 创建Entry对象,并将其放入table

   这一个位置没有值的时候,e就是null,有的话e就是指向先前位置的指针

源码分析

//存储数据的方法
public V put(K key,V value){ // k: Integer V: String
     //对空判断,允许key 为 null
     if(key == null)
        return putForNullKey(value);
    //获取哈希码
    int hash = hash(key);
    //得到元素在数组中的位置
    int i = indexFor(hash,table.length)l
    //如果放入的数组的位置上没有元素的话,那么直接添加就行了,不用走这个for循环
    //e != null 满足的话,说明这个位置上有东西了
    for(Entry<K,V> e = table[i];e != null ;e=e.next){
        Object k;
        //如果发生hash碰撞的时候,会先比较hash值
        //比较key是否是一个对象,如果是一个对象的话,equals就不比较了
        //如果不是同一个对象,会比较equals方法
        //如果hash值不一样,equals方法比较的结果也一样,那么才会走这个if
        if(e.hash == hash && ((k == e.key) == key || key.equals(k))){
            V oldvalue = e.value;//获取先前的value
            e.value = value;//新的value替换老的value
//只替换value,不替换key(key相同)
            e.recordAccess(this);
            return oldValue;//将先前的value返回
        }
    }
    addEntry(hash , key,value,i);
    return null;
}

7.HashMap底层数组的扩容

源码:

在添加元素前会进行一次判断,符合扩容条件就会自动扩容为原来的两倍 

8.经典面试题

1.为什么装填因子,负载因子,加载因子 是 0.75?

装填因子设置为 1 : 空间利用率提高了,但很容易发生碰撞,容易产生链表--->查询效率低(空间高,时间低)

装填因子设置为 0.5 :空间利用率低, 碰撞低,扩容,产生链表低,查询高(空间低,时间高)

因子取 1和0.5之间的数:0.75

源码:

 2.主数组的长度为什么必须为2的n次幂?

原因:1. h &(length-1) 等效于 h%length操作的前提:length必须是2的整数倍

2.防止hash冲突,位置冲突

9.hash表的使用

创建

HashMap<String,String> map = new HashMap<>();

判断是否包含key

map.containsKey(?)

对value重新赋值

table[key] = ?;

依次遍历hash表

1.根据key遍历



Set<String> sets = map.keySet();
		Iterator<String> iterator = sets.iterator();
		while(iterator.hasNext()) {
			String key = iterator.next();
			Student stu2 = map.get(key);
			System.out.println(stu2);
		}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

jjj34

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值