[书生实战营] 基础岛4: Llamaindex RAG实践

一、基础任务

  • 任务要求:基于 LlamaIndex 构建自己的 RAG 知识库,寻找一个问题 A 在使用 LlamaIndex 之前InternLM2-Chat-1.8B模型不会回答,借助 LlamaIndex 后 InternLM2-Chat-1.8B 模型具备回答 A 的能力,截图保存。

1.环境配置

使用 conda 配置项目python环境

# 创建环境
conda create -n rag python=3.11
# 激活环境
conda activate rag
# 安装一些必要的库
conda install pytorch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2 pytorch-cuda=11.7 -c pytorch -c nvidia
# 安装其他依赖
pip install einops
pip install protobuf
pip install llama-index==0.10.38 llama-index-llms-huggingface==0.2.0 "transformers[torch]==4.41.1" "huggingface_hub[inference]==0.23.1" huggingface_hub==0.23.1 sentence-transformers==2.7.0 sentencepiece==0.2.0
pip install llama-index-embeddings-huggingface llama-index-embeddings-instructor
pip install streamlit==1.36.0

2.下载Sentence Transformer 模型

在进行RAG之前,需要使用词向量模型进行Embedding,将文本进行向量化处理,此处选择 Sentence Transformer 模型,并使用huggingface-cli下载。

创建download_hf.py文件,内容如下,其中--local-dir需要修改为本地的路径

import os

# 设置环境变量
os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com'

# 下载模型
os.system('huggingface-cli download --resume-download sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 --local-dir /root/projects/2_4_RAG/model/sentence-transformer')

3.配置 InternLM2 1.8B 模型

使用链接的方式,链接InternLM2 1.8B

cd ./model
ln -s /root/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b/ ./

llamindex_demo文件夹下,创建llamaindex_internlm.py文件,文件内容如下

from llama_index.llms.huggingface import HuggingFaceLLM
from llama_index.core.llms import ChatMessage
llm = HuggingFaceLLM(
    model_name="/root/projects/2_4_RAG/model/internlm2-chat-1_8b",
    tokenizer_name="/root/projects/2_4_RAG/model/internlm2-chat-1_8b",
    model_kwargs={"trust_remote_code":True},
    tokenizer_kwargs={"trust_remote_code":True}
)

rsp = llm.chat(messages=[ChatMessage(content="xtuner是什么?")])
print(rsp)

可以运行测试,得到结果如下。可以看出模型本身并不具备关于xtuner的相关知识,回复也比较杂乱。

在这里插入图片描述

4.创建知识库

llamindex_demo文件夹下,创建data文件夹,用于构建知识库。并使用git clone命令下载。

cd data
git clone https://github.com/InternLM/xtuner.git
mv xtuner/README_zh-CN.md ./

llamindex_demo文件夹下,创建llamaindex_RAG.py文件,文件内容如下

from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Settings
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.llms.huggingface import HuggingFaceLLM

#初始化一个HuggingFaceEmbedding对象,用于将文本转换为向量表示
embed_model = HuggingFaceEmbedding(
#指定了一个预训练的sentence-transformer模型的路径
    model_name="/root/projects/2_4_RAG/model/sentence-transformer"
)
#将创建的嵌入模型赋值给全局设置的embed_model属性,
#这样在后续的索引构建过程中就会使用这个模型。
Settings.embed_model = embed_model

llm = HuggingFaceLLM(
    model_name="/root/projects/2_4_RAG/model/internlm2-chat-1_8b",
    tokenizer_name="/root/projects/2_4_RAG/model/internlm2-chat-1_8b",
    model_kwargs={"trust_remote_code":True},
    tokenizer_kwargs={"trust_remote_code":True}
)
#设置全局的llm属性,这样在索引查询时会使用这个模型。
Settings.llm = llm

#从指定目录读取所有文档,并加载数据到内存中
documents = SimpleDirectoryReader("/root/projects/2_4_RAG/llamaindex_demo/data").load_data()
#创建一个VectorStoreIndex,并使用之前加载的文档来构建索引。
# 此索引将文档转换为向量,并存储这些向量以便于快速检索。
index = VectorStoreIndex.from_documents(documents)
# 创建一个查询引擎,这个引擎可以接收查询并返回相关文档的响应。
query_engine = index.as_query_engine()
response = query_engine.query("xtuner是什么?")

print(response)

运行次测试后,可以看到可以正确回答,并且可以给出回答的出处

在这里插入图片描述

5.创建web应用

llamindex_demo文件夹下,创建app.yp文件,内容如下

import streamlit as st
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Settings
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.llms.huggingface import HuggingFaceLLM

st.set_page_config(page_title="llama_index_demo", page_icon="🦜🔗")
st.title("llama_index_demo")

# 初始化模型
@st.cache_resource
def init_models():
    embed_model = HuggingFaceEmbedding(
        model_name="/root/projects/2_4_RAG/model/sentence-transformer"
    )
    Settings.embed_model = embed_model

    llm = HuggingFaceLLM(
        model_name="/root/projects/2_4_RAG/model/internlm2-chat-1_8b",
        tokenizer_name="/root/projects/2_4_RAG/model/internlm2-chat-1_8b",
        model_kwargs={"trust_remote_code": True},
        tokenizer_kwargs={"trust_remote_code": True}
    )
    Settings.llm = llm

    documents = SimpleDirectoryReader("/root/projects/2_4_RAG/llamaindex_demo/data").load_data()
    index = VectorStoreIndex.from_documents(documents)
    query_engine = index.as_query_engine()

    return query_engine

# 检查是否需要初始化模型
if 'query_engine' not in st.session_state:
    st.session_state['query_engine'] = init_models()

def greet2(question):
    response = st.session_state['query_engine'].query(question)
    return response

      
# Store LLM generated responses
if "messages" not in st.session_state.keys():
    st.session_state.messages = [{"role": "assistant", "content": "你好,我是你的助手,有什么我可以帮助你的吗?"}]    

    # Display or clear chat messages
for message in st.session_state.messages:
    with st.chat_message(message["role"]):
        st.write(message["content"])

def clear_chat_history():
    st.session_state.messages = [{"role": "assistant", "content": "你好,我是你的助手,有什么我可以帮助你的吗?"}]

st.sidebar.button('Clear Chat History', on_click=clear_chat_history)

# Function for generating LLaMA2 response
def generate_llama_index_response(prompt_input):
    return greet2(prompt_input)

# User-provided prompt
if prompt := st.chat_input():
    st.session_state.messages.append({"role": "user", "content": prompt})
    with st.chat_message("user"):
        st.write(prompt)

# Gegenerate_llama_index_response last message is not from assistant
if st.session_state.messages[-1]["role"] != "assistant":
    with st.chat_message("assistant"):
        with st.spinner("Thinking..."):
            response = generate_llama_index_response(prompt)
            placeholder = st.empty()
            placeholder.markdown(response)
    message = {"role": "assistant", "content": response}
    st.session_state.messages.append(message)

使用如下命令运行

streamlit run app.py

运行后可以打开网页端,可以进行提问

在这里插入图片描述

6.自定义知识库设置

当我们直接提问RAG是什么?时,模型不能给出正确的回答

在这里插入图片描述

参考之前的流程,在data文件夹下创建RAG.md文件,内容如下:

RAG(Retrieval-Augmented Generation,检索增强生成)是一种为大模型提供外部知识源的概念,旨在帮助这些模型生成更准确且符合上下文的答案,同时减少模型幻觉。它的核心思想是将生成模型与检索器模块相结合,利用外部知识源提供附加信息,这些信息可以方便地进行更新维护。

具体来说,RAG的工作流程包括以下几个步骤:

检索(Retrieve):根据用户请求,从外部知识源检索相关上下文。这通常涉及到使用嵌入模型将用户查询嵌入到与向量数据库中的附加上下文相同的向量空间中,从而执行相似性搜索并返回最接近的数据对象。
增强(Augment):将用户查询和检索到的附加上下文填充到提示模板中。
生成(Generate):最后,将检索增强的提示馈送到大型语言模型(LLM)中,生成回答。
RAG的实现可以通过不同的技术栈来完成。例如,可以使用LangChain结合OpenAI语言模型和Weaviate矢量数据库在Python中实现RAG Pipeline。这涉及到安装相关Python包(如langchain、openai、weaviate-client),准备矢量数据库作为外部知识源,以及编写代码来实现数据检索、提示增强和答案生成的过程。

重新运行带有RAG功能的大模型,可以得到正确的回复以及出处

在这里插入图片描述

  • 4
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值