滑雪
题目描述
Michael 喜欢滑雪。这并不奇怪,因为滑雪的确很刺激。可是为了获得速度,滑的区域必须向下倾斜,而且当你滑到坡底,你不得不再次走上坡或者等待升降机来载你。Michael 想知道在一个区域中最长的滑坡。区域由一个二维数组给出。数组的每个数字代表点的高度。下面是一个例子:
1 2 3 4 5
16 17 18 19 6
15 24 25 20 7
14 23 22 21 8
13 12 11 10 9
一个人可以从某个点滑向上下左右相邻四个点之一,当且仅当高度会减小。在上面的例子中,一条可行的滑坡为 24-17-16-1(从 24 开始,在 1 结束)。当然 25-24-23-……-3-2-1 更长。事实上,这是最长的一条。
输入格式
输入的第一行为表示区域的二维数组的行数 R和列数 C。下面是 R 行,每行有 C 个数,代表高度(两个数字之间用 1 个空格间隔)。
输出格式
输出区域中最长滑坡的长度。
输入样例
5 5
1 2 3 4 5
16 17 18 19 6
15 24 25 20 7
14 23 22 21 8
13 12 11 10 9
输出样例
25
说明/提示
对于 100% 的数据,1≤R,C≤100
理解题目
本题是找出存在的最大的路径,首先对于该题我们无法确定路径的起点与末尾结束点,同时,在同一条路径上的点,前一点的值要大于后一点的值,且有四个方向可以选择,因此对于该题dfs是非常适合的。因此我们首先循环每个点,找到以该点为起点的最长路径,
而后反复对比取最大值。
1.纯递归方法
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
const int N=110;
int a[N][N],n,m;
int dx[]={0,1,0,-1},dy[]={1,0,-1,0};
int max(int a,int b)
{
if(a>b)return a;
return b;
}
int dfs(int x,int y)
{
int maxs=1;
for(int i=0;i<4;i++)
{
if(a[x][y]>a[x+dx[i]][y+dy[i]])
maxs=max(maxs,dfs(x+dx[i],y+dy[i])+1);
}
return maxs;
}
int main()
{
int nums=0;
memset(a,0x3f,sizeof(a));
cin>>n>>m;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)cin>>a[i][j];
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)nums=max(nums,dfs(i,j));
cout<<nums<<endl;
return 0;
}
1.记忆搜索递归方法
当时对于该题而言如若直接使用递归方法是否满足题目的时间要求呢?
该题最大可是100行100列,由于判断,对于一个点的最大路径长度计算时间复杂度为O(n),又因为每个点都需要配计算需要再乘上O(n),因此时间复杂度为O(n^2 ),会计算10^8次。极易超出时间。因此可用记忆搜索的方式对dfs进行枝减。
include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
const int N=110;
int a[N][N],b[N][N],n,m;
int dx[]={0,1,0,-1},dy[]={1,0,-1,0};
int max(int a,int b)
{
if(a>b)return a;
return b;
}
int dfs(int x,int y)
{
//进行记忆化操作找出曾计算出的该点的最长路径值
if(b[x][y])return b[x][y];
//当都不满足时该点最长路径为1
b[x][y]=1;
for(int i=0;i<4;i++)
{
if(a[x][y]>a[x+dx[i]][y+dy[i]])
b[x][y]=max(b[x][y],dfs(x+dx[i],y+dy[i])+1);
}
return b[x][y];
}
int main()
{
int nums=0;
memset(a,0x3f,sizeof(a));
memset(b,0,sizeof(b));
cin>>n>>m;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)cin>>a[i][j];
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)nums=max(nums,dfs(i,j));
cout<<nums<<endl;
return 0;
}