【源码】基于Yolov8林业害虫检测并结合大模型实现问答的综合系统

1、基本介绍

 随着林业害虫对森林资源的危害日益严重,如何高效、准确地检测并识别害虫,成为了现代林业管理中的重要课题。本项目基于 YOLOv8 的目标检测技术,结合 PySide6、MySQL和 LangChain ,通过onnx部署训练好的模型,设计并实现了一个智能的林业害虫检测系统。系统不仅可以进行实时的害虫检测,还能通过数据库搜索与大语言模型进行问答交互,帮助用户获取更详细的害虫信息。

本项目包括以下功能模块:

  • 害虫检测:基于 YOLOv8 训练的目标检测模型,支持图片检测、视频检测和摄像头实时检测。
  • 检测记录:记录每次检测的图像名称、时间、检测类别和得分。
  • 本地搜索形态特征:基于 MySQL 数据库,实现通过害虫名称进行形态特征的查询。
  • ChatLLM(大语言模型问答):通过 LangChain 与大语言模型进行问答。
  • 识别结果展示:展示每次检测后的识别结果图片,方便用户查看。

2、基本环境

 本项目主要使用环境:

python - 3.9
mysql - 8.0
pyside6 - 6.7.3
langchain - 0.3.0
langchain_community - 0.3.0
pymysql - 1.1.1
onnxruntime - 1.19.2

 模型通过Yolov8训练,版本号为8.3.61,一般情况下从github下载源码并源码安装即可。在训练过程中,要将训练好的模型导出为onnx格式,在默认情况下支持任意数据集训练好的模型进行目标检测,但需要额外调整与对应模型相关的标签类别。
 大模型问答部分,默认调用的是百度千帆的API,需要自己去百度智能云注册并获取自己的AK和SK,并在chat.py文件中配置。如果您对langchain框架比较熟悉,可以选择其他大模型的API。

3、林业害虫目标检测数据集

 林业害虫目标检测数据集的获取可以查看我的另外一篇博文【FP60】林业害虫数据集——目标检测、图像分类,该数据包含3个不同大小的数据集,要求识别种类丰富且显存富裕可以选择F60,相反可以选择较小的数据集,根据需要进行选择。

4、项目基本功能介绍

4.1、 林业害虫检测

 害虫检测模块是系统的核心功能,利用 YOLOv8 目标检测模型在林业害虫数据集上进行训练,并将训练好的模型导出为onnx格式,方便后续部署。

ONNX(Open Neural Network Exchange)是一个开源的深度学习框架中立格式,旨在为不同深度学习框架之间提供互操作性。它于 2017 年由 Microsoft、Facebook 和 Amazon 等公司联合发布。ONNX 使得开发者能够在不同的框架之间共享模型,消除了框架之间的不兼容问题,简化了模型的迁移、优化和部署过程。通过硬件加速和优化引擎,ONNX 还能够显著提高模型推理性能和降低资源消耗。

 该系统能够对输入的图像、视频或者摄像头实时捕获的画面进行害虫检测。该模块支持多种检测模式,包括:

  • 图片检测:用户上传静态图像,系统进行害虫目标检测。
  • 视频检测:用户上传视频,系统逐帧处理并检测其中的害虫。
  • 摄像头实时检测:系统连接摄像头进行实时视频流处理,实时检测出现的害虫。
    在这里插入图片描述

4.2、检测记录

 每次检测都会生成一个记录,包含图像名称、时间、检测类别和得分信息。通过 PyMySQL,我们可以将每次检测的结果存储到 MySQL 数据库中,方便后续的查询与浏览。
 其次,通过柱状统计图的方式统计了当月检测到的昆虫的数量进行比较,来展示当月出现最多的昆虫科目或类别。
在这里插入图片描述
在这里插入图片描述

4.3、 形态特征

 在数据库中存储了10个科目的害虫信息,包括、成虫特征、幼虫特征等。用户可以通过输入害虫的科属,快速检索相关信息。这里使用 MySQL 进行数据查询,并返回查询结果。
在这里插入图片描述

4.4、 ChatLLM(大语言模型问答)

 ChatLLM 模块使用 LangChain 提供的预训练大语言模型(本项目使用的是Yi-34B-chat),实现基于自然语言的问答功能。用户可以通过与模型的对话,获取害虫的详细信息、处理建议等。
 学有余力的,这里的语言模型可以更换为通过自己文本数据微调后的大模型,从通用模型变为专用模型。
在这里插入图片描述

4.5、 识别结果展示

 每次目标检测后的识别结果都会生成图片,展示检测到的害虫目标。用户可以查看这些图片,进一步分析害虫类型。

在这里插入图片描述

5、视频演示

基于YoloV8的林业害虫检测并结合大模型实现问答


点我跳转

6、源码获取

源码链接,环境配置有问题的小伙伴可以加微信,帮你解决。
 解决问题的过程也是学习的过程嘛,希望大家多多支持!

7、总结

 本项目通过结合 YOLOv8 目标检测技术和 LangChain 大语言模型,成功实现了一个智能的林业害虫检测与问答系统。用户不仅可以通过系统进行实时的害虫检测,还能查询害虫的形态特征和防治措施,甚至与大语言模型进行互动,获取更加详细的信息。这为林业害虫的防治提供了一个高效、智能的解决方案。

 希望这篇文章对你有所帮助,如果你有任何问题,欢迎留言交流!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

鲸可落

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值