【利用Yolov8实现多个检测模型融合】

本文详细介绍了如何使用Yolov8融合两个检测模型,通过重新标注数据集,实现实时多目标识别。提供代码实例,涉及数据处理和模型训练过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述

1 背景

1.1 案例背景

现在有Yolov8两个模型,一个模型用于识别人,一个模型用于识别树。现要求将识别人和识别树的两个模型合并成一个模型,仅利用一个模型就能同时识别人和树。

1.2 解决思路

将同时存在人和树的数据集重新标注,使label文件里存在具有人和树的类别,然后再次训练出新的模型。

1.3 重点解决问题

生成新的label文件,得到新的数据集。在下面的代码中,通过两个类的Yolov8模型对原有数据集对应的训练集和验证集的images进行检测,然后将检测结果进行处理,进而生成新的包含两个类别的数据集。

2 代码实现

from ultralytics import YOLO
import os, cv2
import numpy as np

# 存放全局变量
source_dir_path = [r"F:\0_work\数据集\datasets_clone\train\images", r"F:\0_work\数据集\datasets_clone\val\images"]
yolo_label_dir_path = [r"F:\0_work\数据集\datasets_clone\train\new_labels", r"F:\0_work\数据集\datasets_clone\val\new_labels"]
class MakeLabel():
    def __init__(self):
        # 设置模型路径,并加载模型
        self.people_model_path = "./weights/people_best.pt"
        self.tree_model_path = "./weights/tree_best.pt"

        self.people_model = YOLO(self.people_model_path, task='detect')
        self.tree_model 
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值