【 1. Dlib 绘制人脸特征点 】
在识别出人脸特征点之后,绘制对应的特征点能可视化特征效果。
Dlib本身提供了绘制特征点的方法,主要分为以下几步:
- 使用image_window()新建图像窗口:
win = dlib.image_window()
- 指定窗口图片:
win.clear_overlay()
win.set_image(img)
- 绘制面部轮廓:
# 使用predictor来计算面部轮廓
shape = predictor(img, faces[i])
# 绘制面部轮廓
win.add_overlay(shape)
- 绘制人脸区域矩阵。
# 绘制矩阵轮廓
win.add_overlay(faces)
完整的代码示例如下:
import dlib
import cv2
# 使用 Dlib 的正面人脸检测器 frontal_face_detector
detector = dlib.get_frontal_face_detector()
# Dlib 的 68点模型
predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat")
# 读取图片
img = cv2.imread("picture.jpg")
# 生成 Dlib 的图像窗口
win = dlib.image_window()
win.set_image(img)
# 使用 detector 检测器来检测图像中的人脸
faces = detector(img, 1)
print("人脸数:", len(faces))
for i, d in enumerate(faces):
print("第", i+1, "个人脸的矩形框坐标:",
"left:", d.left(), "right:", d.right(), "top:", d.top(), "bottom:", d.bottom())
# 使用predictor来计算面部轮廓
shape = predictor(img, faces[i])
# 绘制面部轮廓
win.add_overlay(shape)
# 绘制矩阵轮廓
win.add_overlay(faces)
dlib.hit_enter_to_continue()
运行结果:
【 2. OpenCV 绘制人脸特征点 】
同样的,我们也可以调用OpenCV的绘点函数,绘制出每一个点。
cv2.circle(img, center, radius, color, thickness)
# image: 图片对象;
# center: 圆心坐标;
# radius: 圆半径;
# color: 以BGR方式指定的颜色,例如(255,0,0)是蓝色;
# thickness:线的粗细。
完整示例:
import cv2
import dlib
# 读取图片
img_path = "picture.jpg"
img = cv2.imread(img_path)
# 转换为灰阶图片
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 正向人脸检测器
detector = dlib.get_frontal_face_detector()
# 使用训练完成的68个特征点模型
predictor_path = "shape_predictor_68_face_landmarks.dat"
predictor = dlib.shape_predictor(predictor_path)
# 使用检测器来检测图像中的人脸
faces = detector(gray, 1)
for i, face in enumerate(faces):
# 获取人脸特征点
shape = predictor(img, face)
# 遍历所有点
for pt in shape.parts():
# 绘制特征点
pt_pos = (pt.x, pt.y)
cv2.circle(img, pt_pos, 1, (255,0, 0), 2)
cv2.imshow('opencv_face_laowang',img) # 显示图片
cv2.waitKey(0) # 等待用户关闭图片窗口
cv2.destroyAllWindows()# 关闭窗口
运行结果: