近世代数--极大理想--I是R的极大理想↔R/I是域

本文介绍了近世代数中的极大理想概念,通过实例分析了整环Z18的极大理想,并证明了素数与极大理想的关系,以及极大理想与构造域的联系。讨论了理想吸收性性质,证明了R/I为域的充要条件是I为R的极大理想。
摘要由CSDN通过智能技术生成

近世代数--极大理想--I是R的极大理想↔R/I是域

博主是初学近世代数(群环域),本意是想整理一些较难理解的定理、算法,加深记忆也方便日后查找;如果有错,欢迎指正。
我整理成一个系列:近世代数,方便检索。

商环类似商群,通过对环、理想限制某些条件,可以构造出不同特点的环。现在我们通过素理想,构造整环;通过极大理想,构造域

  • 极大理想maximal ideal M M M

    R R R为环, M M M R R R的真理想,(这里是真理想的定义),如果对于 R R R中任一包含 M M M的理想 N N N,必有 N = M N=M N=M N = R , N=R, N=R, M M M R R R的极大理想。

  • 极大理想例子

    • Z 18 Z_{18} Z18的所有极大理想

      Z 18 Z_{18} Z18的所有理想: < 0 > 、 < 1 > 、 < 2 > 、 < 3 > 、 < 6 > 、 < 9 > <0>、<1>、<2>、<3>、<6>、<9> <0><1><2><3><6><9>

      • < 1 > <1> <1>不是真子集;
      • < 6 > ⊆ < 3 > <6>\subseteq <3> <6><3>,不是极大理想;
      • < 9 > ⊆ < 3 > <9>\subseteq <3> <9><3>,不是极大理想;
      • < 0 > ⊆ < 3 > <0>\subseteq <3> <0><3>,不是极大理想;
      • < 2 > 、 < 3 > <2>、<3> <2><3> Z 18 Z_{18} Z18的极大理想
    • < p > <p> <p> Z Z Z的极大理想 ↔ p \leftrightarrow p p为素数

      • < p > <p> <p> Z Z Z的极大理想 → p \rightarrow p p为素数

        首先,有个定理: p p p是素数 ↔ p ∣ a b \leftrightarrow p\mid ab pab一定能得到 p ∣ a p\mid a pa p ∣ b p\mid b pb ( p , a ) = 1 → p ∣ b , ( p , b ) = 1 → p ∣ a (p,a)=1\rightarrow p\mid b,(p,b)=1\rightarrow p\mid a (p,a)=1pb,(p,b)=1pa

        a b ∈ Z , p ∣ a b , ab\in Z,p\mid ab, abZ,pab p ∤ a , → a ∉ < p > → < p > ⊊ < p > + < a > p\nmid a,\\\rightarrow a\notin <p>\\\rightarrow <p>\subsetneq <p>+<a> pa,a/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值