正交基概念

求正交向量组中的系数

考虑 n n n 个任意两个向量之间相互正交的 n n n 维向量 a ⃗ \vec a a ,则其构成一个 n n n 维的欧几里得空间 R n R^n Rn,为其中的每一个向量赋予一个常数系数 c c c,则空间中的任意向量 v v v 可以表示为这组基的线性组合
v ⃗ = c 1 a ⃗ 1 + c 2 a ⃗ 2 + ⋯ + c n a ⃗ n \vec{v} = c_1 \vec a_1 + c_2\vec a_2 + \dots +c_n\vec a_n v =c1a 1+c2a 2++cna n

由于 a 1 , . . . a n a_1,...a_n a1,...an 两两正交,则 ∀ i , j ∈ { 1 , . . . n } \forall i,j \in \{1, ... n\} i,j{1,...n},有

{ a i ⋅ a j T = 1   ( i = j ) a i ⋅ a j T = 0   ( i ≠ j ) \begin{cases} a_i \cdot a_j^T = 1\ (i=j)\\ a_i \cdot a_j^T = 0\ (i\neq j)\\ \end{cases} {aiajT=1 (i=j)aiajT=0 (i=j)
如果此时我们想求任意一个系数 c i c_i ci, 则可以直接把向量 v v v 与目标的分量 c i a i c_ia_i ciai 求内积
v ⃗ T c i a i = ( c 1 a 1 , c 2 a 2 , . . . , c n a n ) T ⋅ c i a i = c i a i T a x = c i \vec v^T c_ia_i = (c_1a_1, c_2a_2, ... ,c_na_n)^T \cdot c_i a_i= c_i a_i^Ta_x = c_i v Tciai=(c1a1,c2a2,...,cnan)Tciai=ciaiTax=ci

三角函数的正交性

周期为 T T T 的函数的正交,可以表示为
1 T ∫ 0 T f ( x ) g ( x ) d x = 0 \frac 1T\int^T_0f(x) g(x) dx = 0 T10Tf(x)g(x)dx=0
对于三角函数

利用积化和差公式,可以证明下列积分等式成立

∫ − π π cos ⁡ n x d x = 0 \int ^{\pi}_{-\pi} \cos nxdx = 0 ππcosnxdx=0
∫ − π π sin ⁡ n x d x = 0 \int ^{\pi}_{-\pi} \sin nxdx = 0 ππsinnxdx=0

∫ − π π sin ⁡ k x cos ⁡ n x d x = 0 ( a ) \int ^{\pi}_{-\pi} \sin kx \cos nxdx = 0 (a) ππsinkxcosnxdx=0(a)

∫ − π π cos ⁡ k x cos ⁡ n x d x = 0 ( n ≠ k ) ( b ) \int ^{\pi}_{-\pi} \cos kx \cos nxdx = 0 (n \neq k)(b) ππcoskxcosnxdx=0(n=k)(b)
∫ − π π sin ⁡ k x sin ⁡ n x d x = 0 ( n ≠ k ) ( c ) \int ^{\pi}_{-\pi} \sin kx \sin nxdx = 0 (n \neq k)(c) ππsinkxsinnxdx=0(n=k)(c)

特别的,对于等式(a),(b),©,当 n = k n = k n=k 时,有
∫ − π π sin ⁡ k x cos ⁡ k x d x = 1 2 ∫ − π π sin ⁡ 2 k x d x = 1 \int ^{\pi}_{-\pi} \sin kx \cos kxdx = \frac 12 \int ^{\pi}_{-\pi}\sin 2kx dx = 1 ππsinkxcoskxdx=21ππsin2kxdx=1

∫ − π π cos ⁡ k x cos ⁡ k x d x = 1 2 ∫ − π π cos ⁡ 2 k x d x = 1 \int ^{\pi}_{-\pi} \cos kx \cos kxdx = \frac 12 \int ^{\pi}_{-\pi}\cos 2kx dx = 1 ππcoskxcoskxdx=21ππcos2kxdx=1

$$
\int ^{\pi}{-\pi} \sin kx \sin kxdx = \frac 12 \int ^{\pi}{-\pi}\sin 2kx dx = 1

$$

因此我们可以将 { 1 , sin ⁡ ω x , cos ⁡ ω x , sin ⁡ 2 ω x , cos ⁡ 2 ω x , … sin ⁡ n ω x , cos ⁡ n ω x } \{1, \sin \omega x, \cos \omega x, \sin 2\omega x, \cos 2\omega x,\dots \sin n\omega x, \cos n\omega x\} {1,sinωx,cosωx,sin2ωx,cos2ωx,sinx,cosx} 视作一组正交基

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
泛函分析是数学中一门研究无穷维空间和无穷维映射的分支学科。张恭庆的《泛函分析》是一本经典的教材,第五章主要讲述了Hilbert空间中的正交投影问题和正交分解问题。 在第五章中,首先介绍了正交投影的概念和性质。正交投影是指将一个元素分解为两个部分,其中一个部分与给定空间上的元素正交,另一个部分则与之共线。张恭庆详细介绍了正交投影的定义、性质和定理,包括正交投影算子的性质和正交投影定理等。 然后,张恭庆讨论了正交分解的问题。正交分解是将一个向量空间表示为正交子空间之和的形式。他介绍了正交子空间的概念以及正交分解的唯一性和存在性。此外,他还讨论了完备正交系和正交概念,并给出了完备正交系和正交的判定定理。 最后,第五章还讨论了最佳逼近问题。最佳逼近是指在一个给定空间中,找到一个在另一个子空间中的最佳逼近元素。张恭庆介绍了最佳逼近问题的定义和性质,以及最佳逼近定理和最佳逼近的存在性。 总结来说,张恭庆的《泛函分析》第五章主要介绍了Hilbert空间中的正交投影问题和正交分解问题。通过学习本章内容,读者可以了解正交投影和正交分解的概念、性质和定理,并且能够应用这些知识解决最佳逼近问题。这一章的内容对于进一步理解泛函分析和应用到实际问题中具有重要意义。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值