求正交向量组中的系数
考虑
n
n
n 个任意两个向量之间相互正交的
n
n
n 维向量
a
⃗
\vec a
a,则其构成一个
n
n
n 维的欧几里得空间
R
n
R^n
Rn,为其中的每一个向量赋予一个常数系数
c
c
c,则空间中的任意向量
v
v
v 可以表示为这组基的线性组合
v
⃗
=
c
1
a
⃗
1
+
c
2
a
⃗
2
+
⋯
+
c
n
a
⃗
n
\vec{v} = c_1 \vec a_1 + c_2\vec a_2 + \dots +c_n\vec a_n
v=c1a1+c2a2+⋯+cnan
由于 a 1 , . . . a n a_1,...a_n a1,...an 两两正交,则 ∀ i , j ∈ { 1 , . . . n } \forall i,j \in \{1, ... n\} ∀i,j∈{1,...n},有
{
a
i
⋅
a
j
T
=
1
(
i
=
j
)
a
i
⋅
a
j
T
=
0
(
i
≠
j
)
\begin{cases} a_i \cdot a_j^T = 1\ (i=j)\\ a_i \cdot a_j^T = 0\ (i\neq j)\\ \end{cases}
{ai⋅ajT=1 (i=j)ai⋅ajT=0 (i=j)
如果此时我们想求任意一个系数
c
i
c_i
ci, 则可以直接把向量
v
v
v 与目标的分量
c
i
a
i
c_ia_i
ciai 求内积
v
⃗
T
c
i
a
i
=
(
c
1
a
1
,
c
2
a
2
,
.
.
.
,
c
n
a
n
)
T
⋅
c
i
a
i
=
c
i
a
i
T
a
x
=
c
i
\vec v^T c_ia_i = (c_1a_1, c_2a_2, ... ,c_na_n)^T \cdot c_i a_i= c_i a_i^Ta_x = c_i
vTciai=(c1a1,c2a2,...,cnan)T⋅ciai=ciaiTax=ci
三角函数的正交性
周期为
T
T
T 的函数的正交,可以表示为
1
T
∫
0
T
f
(
x
)
g
(
x
)
d
x
=
0
\frac 1T\int^T_0f(x) g(x) dx = 0
T1∫0Tf(x)g(x)dx=0
对于三角函数
利用积化和差公式,可以证明下列积分等式成立
∫
−
π
π
cos
n
x
d
x
=
0
\int ^{\pi}_{-\pi} \cos nxdx = 0
∫−ππcosnxdx=0
∫
−
π
π
sin
n
x
d
x
=
0
\int ^{\pi}_{-\pi} \sin nxdx = 0
∫−ππsinnxdx=0
∫ − π π sin k x cos n x d x = 0 ( a ) \int ^{\pi}_{-\pi} \sin kx \cos nxdx = 0 (a) ∫−ππsinkxcosnxdx=0(a)
∫
−
π
π
cos
k
x
cos
n
x
d
x
=
0
(
n
≠
k
)
(
b
)
\int ^{\pi}_{-\pi} \cos kx \cos nxdx = 0 (n \neq k)(b)
∫−ππcoskxcosnxdx=0(n=k)(b)
∫
−
π
π
sin
k
x
sin
n
x
d
x
=
0
(
n
≠
k
)
(
c
)
\int ^{\pi}_{-\pi} \sin kx \sin nxdx = 0 (n \neq k)(c)
∫−ππsinkxsinnxdx=0(n=k)(c)
特别的,对于等式(a),(b),©,当
n
=
k
n = k
n=k 时,有
∫
−
π
π
sin
k
x
cos
k
x
d
x
=
1
2
∫
−
π
π
sin
2
k
x
d
x
=
1
\int ^{\pi}_{-\pi} \sin kx \cos kxdx = \frac 12 \int ^{\pi}_{-\pi}\sin 2kx dx = 1
∫−ππsinkxcoskxdx=21∫−ππsin2kxdx=1
∫ − π π cos k x cos k x d x = 1 2 ∫ − π π cos 2 k x d x = 1 \int ^{\pi}_{-\pi} \cos kx \cos kxdx = \frac 12 \int ^{\pi}_{-\pi}\cos 2kx dx = 1 ∫−ππcoskxcoskxdx=21∫−ππcos2kxdx=1
$$
\int ^{\pi}{-\pi} \sin kx \sin kxdx = \frac 12 \int ^{\pi}{-\pi}\sin 2kx dx = 1
$$
因此我们可以将 { 1 , sin ω x , cos ω x , sin 2 ω x , cos 2 ω x , … sin n ω x , cos n ω x } \{1, \sin \omega x, \cos \omega x, \sin 2\omega x, \cos 2\omega x,\dots \sin n\omega x, \cos n\omega x\} {1,sinωx,cosωx,sin2ωx,cos2ωx,…sinnωx,cosnωx} 视作一组正交基