为什么总是标准正交基(标准直角坐标系)?

坐标系通过基和原点描述点的位置,基和原点的选择影响分析的复杂性。标准正交基简化了距离和角度的计算,尤其在涉及向量的长度和夹角时。在不特别强调尺度的情况下,通常选择标准化基,因为它们提供了统一的尺度。正交基使得点积计算简化,便于理解和应用。因此,标准正交基在涉及距离和角度的分析中被广泛使用,成为简化问题的常用工具。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

       坐标系的作用是什么?简单的一句换就是,坐标系是拿来描述点的位置的。要对事物进行分析,无论是量化分析还是抽象分析,需要首先对事物有一个清晰的定义,这样我们才能知道我们在说什么。对事物进行定义时,特别在涉及到点的位置描述时,我们往往就需要借坐标系,这样我们可以简单方便的对点的位置有一个清晰的描述。

       对点的描述是通过坐标给出,但是单纯的一个坐标没有任何意义,因为坐标只是一个有序对,其中的数字代表什么含义呢?只有当我们明确了基,我们才知道这个坐标在表达什么。甚至如果我们想知道某个坐标对应的绝对位置时,我们还需要明确原点的位置。所以,一个坐标系统两个要素就是:基和原点。如果我们知道了基,我们就知道两个点的相对位置,如果我们还知道原点,我们就还知道点的绝对位置。

       当对现实世界中的事物进行分析建模时,并且需要进行现实应用时,我们往往需要同时明确一个坐标系统的基和原点,因为我们需要知道现实世界中事物的绝对位置。当对非现实世界的事物进行抽象分析,我们往往只在乎点的相对位置,因此这时候原点的位置便不再重要,此时我们只需要随意定义一个原点位置即可。

       上面说过,一个坐标系统的两大要素是基和原点,原点我们已经说过了,剩下的还有基。我们定义一个坐标系统时,除了原点,还需要定义一组基,基是线性无关的,即无法相互线性表达,基的个数表示该坐标系统可以表达的空间维度。比如我们要表达一个二维平面上的点,那么基就是两个,表达三维空间的点,基就是三个,以此类推。但是对于一个n维的空间,有无数组基可以表达,只要这组基满足有k个且互不线性相关即可。

       既然一个空间上的点,有无数组基可以表达,那么为什么我们经常看到的都是标准正交基呢?对应的就是标准直角坐标系。为什么不是别的基,比如对于一个二维平面,为什么不是用夹角60度的两个基,而是互相垂直的两个基?事实上,对于某个问题,我们可以用无数组基来进行表达,然后分析,我们选定某组基的理由是这样选取,会方便简化我们的分析。因此,我们对于基的选取,不是因为只有这样选才能分析出结论,而是这样选取会简化我们分析而已,不同的基本质等价的。因此,对于不同的问题,我们并不总是选取标准正交基,选取什么样的基,取决于什么样的基可以更见的简化和方便我们的分析。

       因此,我们要回答为什么总是标准正交基这个问题,实际上就是要回答,什么情况下,标准正交基可以更加的简化我们的分析。首先,为什么总是标准化的基,这个问题很简单,因为标准化后的单位基可以让不同维度的坐标表示相同的尺度。我们分析问题时,往往不会刻意的区分不同维度上坐标的尺度,即我们不区分不同维度的特征,这样,不同维度上相同的坐标代表相同的尺度。除非特殊问题,不然我们不会给不同维度的基赋予不同尺度,这是在自己增加额外信息,自找麻烦。所以,为了更加的简化分析,我们往往赋予不同维度的基相同的尺度,因此直接对基进行标准化就可以达到这个目的,这也是为什么我们总是选取标准基的原因。

       标准基的问题已经解答了,接下来的问题是,什么样的情况下,同时选取正交基是更有助于简化分析的。答案就是,当我们的分析涉及到向量的距离长度和角度时,这时选取正交基是可以简化距离长度和角度的表达的。

       要定义长度,首先要定义内积。这里要注意的是,不能想当然的认为某个坐标,即某个向量的长度就是坐标的平方和开根号,这种计算长度的方式是在标准正交基和点积定义的基础上的。内积是线性空间中的一种操作,只需要满足几个条件即可,所以内积也可以有无数种具体的定义。但是需要合理的定义长度和角度时,就需要引入点积。点积是内积的一种,点积可以对我们直观的距离长度和角度有一个准确的定义。这里合理的定义长度和距离中的“合理”的意思是,可以准确描述表达我们现实三维空间中的距离和角度,因此,定义了点积的线性空间,就是我们所说的欧式空间。两个向量点积的定义如下所示:

a\cdot b=|a||b|cos\theta

其中的|a|表示向量a的模,即长度,\theta为向量a和b的夹角。根据此定义,只要我们定义了基的长度和夹角,那么所有向量的点积都可以计算出来。例如,向量a=(x1,y1),b=(x2,y2),基为e1,e2,其为标准基,即基的模为1,基的夹角为\beta,则向量a和b的点积如下:
a\cdot b=(x_{1}e_{1}+y_{1}e_{2})(x_{2}e_{1}+y_{2}e_{2})=x_{1}x_{2}e_{1}e_{1}+y_{1}y_{2}e_{2}e_{2}+(x_{1}y_{2}+x_{2}y_{1})e_{1}e_{2}=x_{1}x_{2}+y_{1}y_{2}+(x_{1}y_{2}+x_{2}y_{1})cos\beta

根据点积定义,我们就可以定义任何向量a的长度为:

|a|=\sqrt{a\cdot a}

向量a和b的夹角\theta为:

\theta = cos^{-1}\frac{a\cdot b}{|a||b|}

这样,在点积的定义下,我们就有了长度距离和角度的概念。

       在点积的定义下,我们知道向量a和b的点积如下:

a\cdot b=x_{1}x_{2}+y_{1}y_{2}+(x_{1}y_{2}+x_{2}y_{1})cos\beta

其中(x1,y1)和(x2,y2)分别为向量a和b的坐标,\beta为基的夹角。由此可见,当夹角为90度,即基相互正交时,基夹角的余弦值为0,那么向量a和b的点积就可以简化为x1x2+y1y2,这正是我们在标准正交基下的向量点积形式。

       至此,我们可以知道,当需要定义距离长度和角度时,取标准正交基可以大大简化长度和角度的定义,从而有助于简化我们的分析。而我们所学的数学,除非学到较深的抽象代数等更加专业数学学科,一般情况下,我们分析的对象往往都需要涉及到距离和角度的概念,如果时现实应用问题,那更是如此,所以我们选取的也往往都是标准正交基。长此以往,我们的大脑习惯了标准正交基上建立的直观,因此我们自己分析问题时,有时尽管不涉及长度和角度概念,我们也往往自然而然的建立标准正交基下的坐标系,从而进一步固化加强我们对标准正交基的直观和依赖。

       通过本文,我们需要知道,标准正交基并不总是最恰当的,具体问题需要选取不同的坐标系统,目的是为了简化问题的分析。但是当问题的分析涉及长度距离和角度时(这是很常见的),那么我们就应该选取标准正交基,基笛卡尔坐标系统,这样可以简化长度和角度的表达,从而简化分析。

### MPU6050姿态解算方法 对于MPU6050的姿态解算,主要依赖于设备内置的三轴陀螺仪和三轴加速度计的数据。通过这些传感器获取的信息可以计算出物体的空间姿态。具体来说,可以通过欧拉角与旋转矩阵来进行姿态求解,并将两种姿态进行互补融合,从而获得更精确的结果[^1]。 #### 使用欧拉角进行姿态解算 欧拉角是一种描述刚体在三维空间中定向的方法,通常由三个角度组成:俯仰角(Pitch)、横滚角(Roll)和偏航角(Yaw)。当从加速度计读取到重力矢量后,可以根据该矢量相对于水平面的角度变化来估算当前平台的姿态。然而,仅依靠加速度计无法提供完整的方向信息;此时就需要借助陀螺仪所提供的角速率数据完成动态情况下的姿态更新。 ```python import numpy as np def calculate_euler_angles(acceleration, gyro_rate, dt): ax, ay, az = acceleration gx, gy, gz = gyro_rate roll_acc = np.arctan2(ay, az) pitch_acc = -np.arcsin(ax / (ax ** 2 + ay ** 2 + az ** 2)**0.5) # Integrate angular velocity to get orientation change over time step `dt` delta_roll_gyro = gx * dt delta_pitch_gyro = gy * dt delta_yaw_gyro = gz * dt return ( roll_acc + delta_roll_gyro, pitch_acc + delta_pitch_gyro, delta_yaw_gyro ) ``` 此代码片段展示了如何于加速信号估计初始姿态并结合来自陀螺仪的变化率以预测下一时刻的位置。 #### 利用旋转矩阵实现坐标变换 为了更好地理解物体的方向特性,在某些应用场景下可能还需要考虑使用旋转矩阵来进行不同参照系之间的转换操作。假设存在两个直角坐标系统A和B,则可通过构建相应的正交底向量组进而形成一个3×3阶方阵R_AB表示两者间的相对关系: \[ R_{AB} = \begin{bmatrix} r_1 & r_2 & r_3 \\ r_4 & r_5 & r_6\\ r_7 & r_8 & r_9 \end{bmatrix}\] 其中每一列代表目标框架内对应单位长度的标准正交基投影至源框架上的分量值。因此只要知道了任意一点P_A=(x,y,z)_A在其所属体系中的位置表达形式之后就可以很容易地将其映射回另一个关联着的新坐标系里去: \[ P_B=R_{BA}*P_A \] 这里需要注意的是由于实际物理环境中不可避免会引入误差累积效应所以单纯采用上述任一手段都难以达到理想效果——这也是为什么文中提到要采取“互补滤波”的原因所在。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值