坐标系的作用是什么?简单的一句换就是,坐标系是拿来描述点的位置的。要对事物进行分析,无论是量化分析还是抽象分析,需要首先对事物有一个清晰的定义,这样我们才能知道我们在说什么。对事物进行定义时,特别在涉及到点的位置描述时,我们往往就需要借坐标系,这样我们可以简单方便的对点的位置有一个清晰的描述。
对点的描述是通过坐标给出,但是单纯的一个坐标没有任何意义,因为坐标只是一个有序对,其中的数字代表什么含义呢?只有当我们明确了基,我们才知道这个坐标在表达什么。甚至如果我们想知道某个坐标对应的绝对位置时,我们还需要明确原点的位置。所以,一个坐标系统两个要素就是:基和原点。如果我们知道了基,我们就知道两个点的相对位置,如果我们还知道原点,我们就还知道点的绝对位置。
当对现实世界中的事物进行分析建模时,并且需要进行现实应用时,我们往往需要同时明确一个坐标系统的基和原点,因为我们需要知道现实世界中事物的绝对位置。当对非现实世界的事物进行抽象分析,我们往往只在乎点的相对位置,因此这时候原点的位置便不再重要,此时我们只需要随意定义一个原点位置即可。
上面说过,一个坐标系统的两大要素是基和原点,原点我们已经说过了,剩下的还有基。我们定义一个坐标系统时,除了原点,还需要定义一组基,基是线性无关的,即无法相互线性表达,基的个数表示该坐标系统可以表达的空间维度。比如我们要表达一个二维平面上的点,那么基就是两个,表达三维空间的点,基就是三个,以此类推。但是对于一个n维的空间,有无数组基可以表达,只要这组基满足有k个且互不线性相关即可。
既然一个空间上的点,有无数组基可以表达,那么为什么我们经常看到的都是标准正交基呢?对应的就是标准直角坐标系。为什么不是别的基,比如对于一个二维平面,为什么不是用夹角60度的两个基,而是互相垂直的两个基?事实上,对于某个问题,我们可以用无数组基来进行表达,然后分析,我们选定某组基的理由是这样选取,会方便简化我们的分析。因此,我们对于基的选取,不是因为只有这样选才能分析出结论,而是这样选取会简化我们分析而已,不同的基本质等价的。因此,对于不同的问题,我们并不总是选取标准正交基,选取什么样的基,取决于什么样的基可以更见的简化和方便我们的分析。
因此,我们要回答为什么总是标准正交基这个问题,实际上就是要回答,什么情况下,标准正交基可以更加的简化我们的分析。首先,为什么总是标准化的基,这个问题很简单,因为标准化后的单位基可以让不同维度的坐标表示相同的尺度。我们分析问题时,往往不会刻意的区分不同维度上坐标的尺度,即我们不区分不同维度的特征,这样,不同维度上相同的坐标代表相同的尺度。除非特殊问题,不然我们不会给不同维度的基赋予不同尺度,这是在自己增加额外信息,自找麻烦。所以,为了更加的简化分析,我们往往赋予不同维度的基相同的尺度,因此直接对基进行标准化就可以达到这个目的,这也是为什么我们总是选取标准基的原因。
标准基的问题已经解答了,接下来的问题是,什么样的情况下,同时选取正交基是更有助于简化分析的。答案就是,当我们的分析涉及到向量的距离长度和角度时,这时选取正交基是可以简化距离长度和角度的表达的。
要定义长度,首先要定义内积。这里要注意的是,不能想当然的认为某个坐标,即某个向量的长度就是坐标的平方和开根号,这种计算长度的方式是在标准正交基和点积定义的基础上的。内积是线性空间中的一种操作,只需要满足几个条件即可,所以内积也可以有无数种具体的定义。但是需要合理的定义长度和角度时,就需要引入点积。点积是内积的一种,点积可以对我们直观的距离长度和角度有一个准确的定义。这里合理的定义长度和距离中的“合理”的意思是,可以准确描述表达我们现实三维空间中的距离和角度,因此,定义了点积的线性空间,就是我们所说的欧式空间。两个向量点积的定义如下所示:
其中的|a|表示向量a的模,即长度,为向量a和b的夹角。根据此定义,只要我们定义了基的长度和夹角,那么所有向量的点积都可以计算出来。例如,向量a=(x1,y1),b=(x2,y2),基为e1,e2,其为标准基,即基的模为1,基的夹角为
,则向量a和b的点积如下:
根据点积定义,我们就可以定义任何向量a的长度为:
向量a和b的夹角为:
这样,在点积的定义下,我们就有了长度距离和角度的概念。
在点积的定义下,我们知道向量a和b的点积如下:
其中(x1,y1)和(x2,y2)分别为向量a和b的坐标,为基的夹角。由此可见,当夹角为90度,即基相互正交时,基夹角的余弦值为0,那么向量a和b的点积就可以简化为x1x2+y1y2,这正是我们在标准正交基下的向量点积形式。
至此,我们可以知道,当需要定义距离长度和角度时,取标准正交基可以大大简化长度和角度的定义,从而有助于简化我们的分析。而我们所学的数学,除非学到较深的抽象代数等更加专业数学学科,一般情况下,我们分析的对象往往都需要涉及到距离和角度的概念,如果时现实应用问题,那更是如此,所以我们选取的也往往都是标准正交基。长此以往,我们的大脑习惯了标准正交基上建立的直观,因此我们自己分析问题时,有时尽管不涉及长度和角度概念,我们也往往自然而然的建立标准正交基下的坐标系,从而进一步固化加强我们对标准正交基的直观和依赖。
通过本文,我们需要知道,标准正交基并不总是最恰当的,具体问题需要选取不同的坐标系统,目的是为了简化问题的分析。但是当问题的分析涉及长度距离和角度时(这是很常见的),那么我们就应该选取标准正交基,基笛卡尔坐标系统,这样可以简化长度和角度的表达,从而简化分析。