【线性代数】线性无关与正交基和正交矩阵

1 前言

  之前在【理解矩阵系列】文章和【理解特征值和特征向量】都提到了线性无关的有关概念,并且在后续的学习中出现了概念的混淆或者定义理解不清楚,现在系统的梳理一下。
  内容为自己的学习总结,其中多有借鉴他人的地方,最后一并给出链接。

2 定义

  1、线性无关的定义:在线性代数里,矢量空间的一组元素中,若没有矢量可用有限个其他矢量的线性组合所表示,则称为线性无关或线性独立,反之称为线性相关。
  例如在三维欧几里得空间R的三个矢量 ( 1 , 0 , 0 ) , ( 0 , 1 , 0 ) (1, 0, 0),(0, 1, 0) (1,0,0)(0,1,0) ( 0 , 0 , 1 ) (0, 0, 1) (0,0,1)线性无关;但 ( 2 , − 1 , 1 ) , ( 1 , 0 , 1 ) (2, −1, 1),(1, 0, 1) (2,1,1)(1,0,1) ( 3 , − 1 , 2 ) (3, −1, 2) (3,1,2)线性相关,因为第三个是前两个的和。
  2、基:基(Basis)是一组线性独立的向量(集合),通过对它们的线性组合,可组合成空间中的任何元素(Span)。即基是线性无关的。
  3、正交基:检验 2 2 2个向量是否正交,就看它们的内积是否为 0 0 0。正交基就是每个向量彼此正交。
  注意:基不能平行,需要相交,并不强制要正交,但是正交的基特别香,单位长度的正交基最香,即标准正交基。
  关系:一组向量线性无关就可以作为一组基,但是这组基不一定正交,一定不会平行。但是实对称矩阵的特征向量一定正交。

3 正交矩阵

3.1 定义

  满足 A T A = I A^TA=I ATA=I的矩阵称为正交矩阵。
假设 A A A是一个列向量矩阵,根据定义:
A T A = [ α 1 T α 2 T α 3 T ⋮ α n T ] [ α 1 , α 2 , α 3 , ⋯ ⋅ α n ] = I A^{T} A=\left[\begin{array}{c} \alpha_{1}^{T} \\ \alpha_{2}^{T} \\ \alpha_{3}^{T} \\ \vdots \\ \alpha_{n}^{T} \end{array}\right]\left[\alpha_{1}, \alpha_{2}, \alpha_{3}, \cdots \cdot \alpha_{n}\right]=I ATA= α1Tα2Tα3TαnT [α1,α2,α3,αn]=I
[ α 1 T α 1 α 1 T α 2 ⋯ α 1 T α n α 2 T α 1 α 2 T α 2 ⋯ α 2 T α n α 3 T α 1 α 3 T α 2 ⋯ α 3 T α n ⋮ ⋮ ⋮ α n T α 1 α n T d 2 ⋯ α n T α n ] = [ 1 0 ⋯ 0 0 1 ⋯ 0 0 0 ⋯ 0 ⋮ 0 ⋮ 0 0 ⋯ ⋯ ] \left[\begin{array}{cccc} \alpha_{1}^{T} \alpha_{1} & \alpha_{1}^{T} \alpha_{2} & \cdots & \alpha_{1}^{T} \alpha_{n} \\ \alpha_{2}^{T} \alpha_{1} & \alpha_{2}^{T} \alpha_{2} & \cdots & \alpha_{2}^{T} \alpha_{n} \\ \alpha_{3}^{T} \alpha_{1} & \alpha_{3}^{T} \alpha_{2} & \cdots & \alpha_{3}^{T} \alpha_{n} \\ \vdots & \vdots & & \vdots \\ \alpha_{n}^{T} \alpha_{1} & \alpha_{n}^{T} d_{2} & \cdots & \alpha_{n}^{T} \alpha_{n} \end{array}\right]=\left[\begin{array}{cccc} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & 0 & & \vdots \\ 0 & 0 & \cdots & \cdots \end{array}\right] α1Tα1α2Tα1α3Tα1αnTα1α1Tα2α2Tα2α3Tα2αnTd2α1Tαnα2Tαnα3TαnαnTαn = 100001000000
从上述推导可以看出任意 α i 和 α j \alpha_i和\alpha_j αiαj

  • 如果 i i i j j j不相等, 则 α i ∗ α j = 0 \alpha_i * \alpha_j=0 αiαj=0,即两个向量垂直。
  • 如果 i i i j j j相等,则 α i ∗ α j = 1 \alpha_i * \alpha_j=1 αiαj=1,即向量自身的内积为1(向量是单位向量:模为1的向量)。

  如果矩阵的各列向量都是单位向量,并且两两正交。那么就说这个矩阵是正交矩阵。(参考xyz三维空间, 各轴上一个长度为1的向量构成的矩阵)
  正交矩阵的逆等于正交矩阵的转置。

3.2 正交矩阵的对角化

  对于正交矩阵,组成它的列向量 构成了一个空间的基,称之为:规范正交基。 而对于一个空间而言,我们是可以找到很多个不同的基来表示的(参考相似矩阵的基底变换),那对于一个空间:假设已知的基底是非规范正交基,有什么办法获取到它的规范正交基呢?【施密特正交法】。
  凡是正交矩阵,一定可以对角化。

  • 对角化: 参考相似矩阵,本质就是 A = P − 1 B P A=P^{-1}BP A=P1BP, 也就是说一个矩阵A可以转为一个对角阵B.

  • 正交矩阵:本身就是相互垂直,只是说它不见得是各个标准轴。可以认为正交矩阵是一个摆歪的立方体,对角化就是将它摆正。【具体参考文献6,例子】

4 参考文献

[1]向量线性无关和正交及其关系
[2]什么叫线性无关?线性无关有什么性质
[3]线性代数“正交”全家桶(1) 正交向量与基
[4]正交矩阵、正交向量组、标准正交基、正交基
[5]正交矩阵学习小结
[6]正交矩阵

  • 0
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值