空间正交基的定义_[线性代数] 2 内积空间上的算子,谱定理

这篇文章记录了在学习中对线性代数一些基本概念或定理的理解,同时发掘一下其中的想法以及与其他知识之间的联系。1 概述1.1 讨论的背景在上一节我们讨论了引入内积空间的想法和意义,那么有了内积空间后,就可以讨论内积空间上的一些算子了。但是如果直接从这些概念的定义入手,确实一开始会觉得非常迷茫,不知道到底在干什么。因此,在了解这一部分的内容之前,首先来看一下我们在这个部分需要解决什么问题。我们需要考虑的...
摘要由CSDN通过智能技术生成

这篇文章记录了在学习中对线性代数一些基本概念或定理的理解,同时发掘一下其中的想法以及与其他知识之间的联系。


1 概述

1.1 讨论的背景

在上一节我们讨论了引入内积空间的想法和意义,那么有了内积空间后,就可以讨论内积空间上的一些算子了。

但是如果直接从这些概念的定义入手,确实一开始会觉得非常迷茫,不知道到底在干什么。因此,在了解这一部分的内容之前,首先来看一下我们在这个部分需要解决什么问题。

我们需要考虑的问题,用简洁的语言来说,就是对线性映射

附加一些条件,使得可对角化的
存在由特征向量构成的规范正交基。

展开来讲,对角化能够帮助我们非常直观了解到线性映射在每个方向上的影响(拉伸或收缩),而对角化的实质就是用一组好的基来描述线性变换,即特征向量组成的基(特征基)。

而如果我们不满足于此,那我们可以试图找一组更好的基去刻画线性变换,即特征向量组成的规范正交基。

1.2 基本内容

为了达到上述目标,我们需要引入一些特殊的算子。对内积空间上的算子的讨论中一般来说会有以下的一些内容:

  • 规范正交基
  • 伴随
  • 正规算子与自伴算子
  • 等距同构
  • 奇异值分解

这些内容的相互关联性很强。首先,在上一节讨论过,定义了内积的向量空间中(即内积空间),可以讨论正交的概念。利用正交我们可以用Gram-Schmidt正交化方法构造规范正交基

接下来我们引入伴随的概念,同时基于该概念定义了自伴算子、正规算子这些特殊的算子。别忘了在这一章中我们的目的要找到

中一些
拥有好的性质的算子
使得
有一个由
特征向量构成的规范正交基
。这里有一个重要的定理:谱定理。这个定理表明正规算子和自伴算子 在一定条件下正是这种“好的算子”

除此之外,等距同构也是内积空间中一种很特殊的算子,它的特点就是保持向量的一些特性不变。包括保范数不变、保内积不变、保规范正交基不变。

最后是奇异值分解,使用这种方法能够让我们更直观地看到矩阵在标准正交基上的作用效果

2 伴随、自伴和正规

2.1 伴随

伴随算子

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值