算法:动态规划

这篇博客介绍了如何使用动态规划解决两类经典问题:一是找到网格中从左上角到右下角的唯一路径,考虑了障碍物的情况;二是寻找字符串中最长的回文子串。通过实例解析了动态规划矩阵的构建和遍历顺序,展示了C++实现的代码。
摘要由CSDN通过智能技术生成

给你一个字符串 s,找到 s 中最长的回文子串。

class Solution {
public:
    string longestPalindrome(string s) {
        if(s.empty())
            return "";
        int length = s.size();
        if(length == 1)
            return s;
        vector<vector<bool>> dp(length, vector<bool>(length, false));
        string result = "";
        for(int i = length - 1; i >= 0; i--)
            for(int j = i; j < length; j++){
                if(j == i)
                    dp[i][j] = true;
                else if(i + 1 == j && s[i] == s[j])
                    dp[i][j] = true;
                else
                    dp[i][j] = (s[i] == s[j]) && dp[i + 1][j - 1];
                
                if(dp[i][j] == true && j - i + 1  >= result.size())
                    result = s.substr(i, j - i + 1);
            }
        return result;    
    }
};

经验:
1、问题拆分为两个部分,一部分是如何确定这个子字符串是回文,另一个问题是考虑长度。拆分开来西靠比较容易解决,并且由于回文字符串的性质可知,同时考虑两边添加元素远比一边添加元素要来的容易。
2、注意:本题DP解法中,遍历顺序是十分考究的,只有解法中的一边++一边–才能够按照要求的顺序更新。
3、C++中二维数组的创建十分容易,
vector<vector> dp(m, vector(n, a))表示的是初始化一个m行n列的,初始值为a的二维数组。

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。
问总共有多少条不同的路径?

class Solution {
public:
    int uniquePaths(int m, int n) {
        vector<vector<int>> dp(m, vector<int>(n, 0));
        for(int i = 0; i < m; i++)
            dp[i][0] = 1;
        for(int j = 0; j < n; j++)
            dp[0][j] = 1;
        for(int i = 1; i < m; i++)
            for(int j = 1; j < n; j++)
                dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
        return dp[m - 1][n - 1];
    }
};

一遍过,水题。

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。
现在考网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?

class Solution {
public:
    int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
        if(obstacleGrid.empty() || obstacleGrid[0].empty())
            return 0;
        int m = obstacleGrid.size();
        int n = obstacleGrid[0].size();
        vector<vector<long>>dp(m, vector<long>(n, 0));
        for(int i = 0; i < m; i++)
            if(obstacleGrid[i][0] == 1)
                break;
            else
                dp[i][0] = 1;
        for(int j = 0; j < n; j++)
            if(obstacleGrid[0][j] == 1)
                break;
            else
                dp[0][j] = 1;

        for(int i = 1; i < m; i++)
            for(int j = 1; j < n; j++)
                if(obstacleGrid[i][j] == 1)
                    dp[i][j] = 0;
                else
                    dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
        return dp[m - 1][n - 1];  
    }
};

升级版,依旧是水题,不过二维数组的下标位置需要注意。。写反了开始一直没检查出来。。
2、heap-buffer-overflow在LeetCode中一般是由数组下标越界造成的。

给定一个包含非负整数的 m x n 网格 grid ,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。
说明:每次只能向下或者向右移动一步。

class Solution {
public:
    int minPathSum(vector<vector<int>>& grid) {
        if(grid.empty() || grid[0].empty())
            return 0;
        int m = grid.size(), n = grid[0].size();
        vector<vector<int>>dp(m, vector<int>(n, 0));
        for(int i = 0; i < m; i++)
            if(i == 0)
                dp[i][0] = grid[0][0]; 
            else
                dp[i][0] = dp[i - 1][0] + grid[i][0];
        for(int j = 0; j < n; j++)
            if(j == 0)
                ;
            else
                dp[0][j] = dp[0][j - 1] + grid[0][j];
            
        for(int i = 1; i < m; i++)
            for(int j = 1; j < n; j++)
                dp[i][j] = min(dp[i - 1][j], dp[i][j - 1]) + grid[i][j];
        return dp[m - 1][n - 1];   
    }
};

水题,一遍过

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值