MapReduce>分布式计算框架MapReduce(C)

1、MapTask运行机制详解以及Map任务的并行度

在这里插入图片描述

  • 整个Map阶段流程大体如上图所示。简单概述:inputFile通过split被逻辑切分为多个split文件,通过Record按行读取内容给map(用户自己实现的)进行处理,数据被map处理结束之后交给OutputCollector收集器,对其结果key进行分区(默认使用hash分区),然后写入buffer,每个map task都有一个内存缓冲区,存储着map的输出结果,当缓冲区快满的时候需要将缓冲区的数据以一个临时文件的方式存放到磁盘,当整个map task结束后再对磁盘中这个map task产生的所有临时文件做合并,生成最终的正式输出文件,然后等待reduce task来拉数据。

总结

Split的逻辑切分

获取(读取)到的数据,对数据进行逻辑切分,切分的大小是128M. 这里的128 与HDFS数据块的128没有任何关系
HDFS 128 是存储层面的数据切分
Split128 是计算层面的128,只不过数据恰好相等。
两个128相同的原因是,一个集成程序能够正好计算一个数据块
在这里插入图片描述

Map的输出到内存

Map的输出先写入环形缓冲区(默认大小100M-可以认为调整)(可以再输出的同时写入数据),当缓冲区内的数据 达到阈值(默认0.8-可以人为调整)时,对数据进行flash。
flash 出去的数据的数量达到一定量(默认4个)时,进行数据的合并。

  • 1、首先,读取数据组件InputFormat(默认TextInputFormat)会通过getSplits方法对输入目录中文件进行逻辑切片规划得到splits,有多少个split就对应启动多少个MapTask。默认情况下split与block的对应关系默认是一对一。
  • 2、将输入文件切分为splits之后,由RecordReader对象(默认LineRecordReader)进行读取,以\n作为分隔符,读取一行数据,返回<key,value>。Key表示每行首字符偏移值,value表示这一行文本内容。
  • 3、读取split返回<key,value>,进入用户自己继承的Mapper类中,执行用户重写的map函数。RecordReader读取一行用户重写的map调用一次,并输出一个<key,value>。
  • 4、Map输出的数据会写入内存,内存中这片区域叫做环形缓冲区,缓冲区的作用是批量收集map结果,减少磁盘IO的影响。key/value对以及Partition的结果都会被写入缓冲区。当然写入之前,key与value值都会被序列化成字节数组。
    环形缓冲区其实是一个数组,数组中存放着key、value的序列化数据和key、value的元数据信息,包括partition、key的起始位置、value的起始位置以及value的长度。环形结构是一个抽象概念。
    缓冲区是有大小限制,默认是100MB。当map task的输出结果很多时,就可能会撑爆内存,所以需要在一定条件下将缓冲区中的数据临时写入磁盘,然后重新利用这块缓冲区。这个从内存往磁盘写数据的过程被称为Spill,中文可译为溢写。这个溢写是由单独线程来完成,不影响往缓冲区写map结果的线程。溢写线程启动时不应该阻止map的结果输出,所以整个缓冲区有个溢写的比例spill.percent。这个比例默认是0.8,也就是当缓冲区的数据已经达到阈值(buffer size * spill percent = 100MB * 0.8 = 80MB),溢写线程启动,锁定这80MB的内存,执行溢写过程。Map task的输出结果还可以往剩下的20MB内存中写,互不影响。
  • 5、合并溢写文件:每次溢写会在磁盘上生成一个临时文件(写之前判断是否有combiner),如果map的输出结果真的很大,有多次这样的溢写发生,磁盘上相应的就会有多个临时文件存在。当整个数据处理结束之后开始对磁盘中的临时文件进行merge合并,因为最终的文件只有一个,写入磁盘,并且为这个文件提供了一个索引文件,以记录每个reduce对应数据的偏移量。
    至此map整个阶段结束。

mapTask的一些基础设置配置(mapred-site.xml当中设置):

设置一:设置环型缓冲区的内存值大小(默认设置如下)
mapreduce.task.io.sort.mb:100
设置二:设置溢写百分比(默认设置如下)
mapreduce.map.sort.spill.percent:0.80
 设置三:设置溢写数据目录(默认设置)
mapreduce.cluster.local.dir:${hadoop.tmp.dir}/mapred/local
 设置四:设置一次最多合并多少个溢写文件(默认设置如下)
mapreduce.task.io.sort.factor:10

2、ReduceTask 工作机制以及reduceTask的并行度

Reduce大致分为copy、sort、reduce三个阶段,重点在前两个阶段。copy阶段包含一个eventFetcher来获取已完成的map列表,由Fetcher线程去copy数据,在此过程中会启动两个merge线程,分别为inMemoryMerger和onDiskMerger,分别将内存中的数据merge到磁盘和将磁盘中的数据进行merge。待数据copy完成之后,copy阶段就完成了,开始进行sort阶段,sort阶段主要是执行finalMerge操作,纯粹的sort阶段,完成之后就是reduce阶段,调用用户定义的reduce函数进行处理。

Reduce数据读取

Reduce 主动发出拷贝进程(默认5个copy进程)到Map端获取数据。 获取到数据后,将数据写入内存,当数据达到阈值,将数据flash出去。 当flash出去文件达到一定的量时,进行数据的合并。最终将数据发送给reduce

在这里插入图片描述
详细步骤:

  • 1、Copy阶段,简单地拉取数据。Reduce进程启动一些数据copy线程(Fetcher),通过HTTP方式请求maptask获取属于自己的文件。
  • 2、Merge阶段。这里的merge如map端的merge动作,只是数组中存放的是不同map端copy来的数值。Copy过来的数据会先放入内存缓冲区中,这里的缓冲区大小要比map端的更为灵活。merge有三种形式:内存到内存;内存到磁盘;磁盘到磁盘。默认情况下第一种形式不启用。当内存中的数据量到达一定阈值,就启动内存到磁盘的merge。与map 端类似,这也是溢写的过程,这个过程中如果你设置有Combiner,也是会启用的,然后在磁盘中生成了众多的溢写文件。第二种merge方式一直在运行,直到没有map端的数据时才结束,然后启动第三种磁盘到磁盘的merge方式生成最终的文件。
  • 3、合并排序。把分散的数据合并成一个大的数据后,还会再对合并后的数据排序。
  • 4、对排序后的键值对调用reduce方法,键相等的键值对调用一次reduce方法,每次调用会产生零个或者多个键值对,最后把这些输出的键值对写入到HDFS文件中。

MapReduce总体工作机制

在这里插入图片描述

  • 5、map逻辑完之后,将map的每条结果通过context.write进行collect数据收集。在collect中,会先对其进行分区处理,默认使用HashPartitioner。
    MapReduce提供Partitioner接口,它的作用就是根据key或value及reduce的数量来决定当前的这对输出数据最终应该交由哪个reduce task处理。默认对key hash后再以reduce task数量取模。默认的取模方式只是为了平均reduce的处理能力,如果用户自己对Partitioner有需求,可以订制并设置到job上。

  • 6、当溢写线程启动后,需要对这80MB空间内的key做排序(Sort)。排序是MapReduce模型默认的行为,这里的排序也是对序列化的字节做的排序。

如果job设置过Combiner,那么现在就是使用Combiner的时候了。将有相同key的key/value对的value加起来,减少溢写到磁盘的数据量。Combiner会优化MapReduce的中间结果,所以它在整个模型中会多次使用。
哪些场景才能使用Combiner呢?从这里分析,Combiner的输出是Reducer的输入,Combiner绝不能改变最终的计算结果。Combiner只应该用于那种Reduce的输入key/value与输出key/value类型完全一致,且不影响最终结果的场景。比如累加,最大值等(求平均值绝不能用Combiner)。Combiner的使用一定得慎重,如果用好,它对job执行效率有帮助,反之会影响reduce的最终结果。

3、MapReduceshuffle过程

map阶段处理的数据如何传递给reduce阶段,是MapReduce框架中最关键的一个流程,这个流程就叫shuffle。
shuffle: 洗牌、发牌——(核心机制:数据分区,排序,分组,ComBine,合并等过程)。
在这里插入图片描述
shuffle是Mapreduce的核心,它分布在Mapreduce的map阶段和reduce阶段。一般把从Map产生输出开始到Reduce取得数据作为输入之前的过程称作shuffle。

  • 维度一,流程维度回顾。从Map输出到Reduce输入
    在这里插入图片描述
    在这里插入图片描述
  • 维度二,内存维度回顾。从Map输出到Reduce输入。
    在这里插入图片描述
    在这里插入图片描述
  • Shffle阶段的内存与流程到底是个什么关系呢?
    在这里插入图片描述
  • 1).Collect阶段:将MapTask的结果输出到默认大小为100M的环形缓冲区,保存的是key/value,Partition分区信息等。
  • 2).Spill阶段:当内存中的数据量达到一定的阀值的时候,就会将数据写入本地磁盘,在将数据写入磁盘之前需要对数据进行一次排序的操作,如果配置了combiner,还会将有相同分区号和key的数据进行排序。
  • 3).Merge阶段:把所有溢出的临时文件进行一次合并操作,以确保一个MapTask最终只产生一个中间数据文件。
  • 4).Copy阶段:ReduceTask启动Fetcher线程到已经完成MapTask的节点上复制一份属于自己的数据,这些数据默认会保存在内存的缓冲区中,当内存的缓冲区达到一定的阀值的时候,就会将数据写到磁盘之上。
  • 5).Merge阶段:在ReduceTask远程复制数据的同时,会在后台开启两个线程对内存到本地的数据文件进行合并操作。
  • 6).Sort阶段:在对数据进行合并的同时,会进行排序操作,由于MapTask阶段已经对数据进行了局部的排序,ReduceTask只需保证Copy的数据的最终整体有效性即可。
    Shuffle中的缓冲区大小会影响到mapreduce程序的执行效率,原则上说,缓冲区越大,磁盘io的次数越少,执行速度就越快
    缓冲区的大小可以通过参数调整, 参数:mapreduce.task.io.sort.mb 默认100M

如何能够让Map执行效率最高

尽量减少环形缓冲区flush的次数(减少IO 的使用)
1、调大环形缓冲区的大小,将100M调更大。
2、调大环形缓冲区阈值大的大小。 3、对Map输出的数据进行压缩。(数据在压缩和解压的过程中会消耗CPU)

如何能够让Reduce执行效率最高

1、尽量将所有的数据写入内存,在内存中进行计算
在这里插入图片描述

集群调优核心思路

在网络带宽、磁盘IO是瓶颈的前提下 能不使用io 和网络,就不使用。在必须使用的情况下,能少用IO 网络就少用,
所有的能够减少网络开销的、减少IO使用的可选项,都可以作为集群调优的可选项。(软件层面(操作系统----集群 层面),硬件层面,网络层面)

4、shuffle阶段数据的压缩机制

在shuffle阶段,可以看到数据通过大量的拷贝,从map阶段输出的数据,都要通过网络拷贝,发送到reduce阶段,这一过程中,涉及到大量的网络IO,如果数据能够进行压缩,那么数据的发送量就会少得多,那么如何配置hadoop的文件压缩呢,以及hadoop当中的文件压缩支持哪些压缩算法呢??接下来一一细看
MapReduce的执行流程
为什么要配置压缩:
MapReduce
input
mapper
shuffle
partitioner、sort、combiner、【compress】、group
reducer
output

1、hadoop当中支持的压缩算法

文件压缩有两大好处,节约磁盘空间,加速数据在网络和磁盘上的传输
前面hadoop的版本经过重新编译之后,可以看到hadoop已经支持所有的压缩格式了,剩下的问题就是该如何选择使用这些压缩格式来对MapReduce程序进行压缩
可以使用bin/hadoop checknative 来查看编译之后的hadoop支持的各种压缩,如果出现openssl为false,那么就在线安装一下依赖包
bin/hadoop checknative
yum install openssl-devel
在这里插入图片描述
hadoop支持的压缩算法

压缩格式工具算法文件扩展名是否可切分
DEFLATEDEFLATE.deflate
GzipgzipDEFLATE.gz
bzip2bzip2bzip2bz2
LZOlzopLZO.lzo
LZ4LZ4.lz4
SnappySnappy.snappy

各种压缩算法对应使用的java类

压缩格式对应使用的java类
DEFLATEorg.apache.hadoop.io.compress.DeFaultCodec
gziporg.apache.hadoop.io.compress.GZipCodec
bzip2org.apache.hadoop.io.compress.BZip2Codec
LZOcom.hadoop.compression.lzo.LzopCodec
LZ4org.apache.hadoop.io.compress.Lz4Codec
Snappyorg.apache.hadoop.io.compress.SnappyCodec

常见的压缩速率比较

压缩算法原始文件大小压缩后的文件大小压缩速度解压缩速度
gzip8.3GB1.8GB17.5MB/s58MB/s
bzip28.3GB1.1GB2.4MB/s9.5MB/s
LZO-bset8.3GB2GB4MB/s60.6MB/s
LZO8.3GB2.9GB49.3MB/S74.6MB/s

snappy比以上压缩算法都要快

如何开启压缩:

  • 方式一:在代码中进行设置压缩
设置map阶段的压缩
Configuration configuration = new Configuration();
configuration.set("mapreduce.map.output.compress","true");
configuration.set("mapreduce.map.output.compress.codec","org.apache.hadoop.io.compress.SnappyCodec");

设置reduce阶段的压缩
configuration.set("mapreduce.output.fileoutputformat.compress","true");
configuration.set("mapreduce.output.fileoutputformat.compress.type","RECORD");
configuration.set("mapreduce.output.fileoutputformat.compress.codec","org.apache.hadoop.io.compress.SnappyCodec");
  • 方式二:配置全局的MapReduce压缩
    修改mapred-site.xml配置文件,然后重启集群,以便对所有的mapreduce任务进行压缩
map输出数据进行压缩
<property>
          <name>mapreduce.map.output.compress</name>
          <value>true</value>
</property>
<property>
         <name>mapreduce.map.output.compress.codec</name>
         <value>org.apache.hadoop.io.compress.SnappyCodec</value>
</property>
reduce输出数据进行压缩
<property>       <name>mapreduce.output.fileoutputformat.compress</name>
       <value>true</value>
</property>
<property>         <name>mapreduce.output.fileoutputformat.compress.type</name>
        <value>RECORD</value>
</property>
 <property>        <name>mapreduce.output.fileoutputformat.compress.codec</name>
        <value>org.apache.hadoop.io.compress.SnappyCodec</value> </property>

所有节点都要修改mapred-site.xml,修改完成之后记得重启集群

2、使用hadoop的snappy压缩来对数据进行压缩

  • 第一步:代码中添加配置
    这里通过修改代码的方式来实现数据的压缩
map阶段输出压缩配置
Configuration configuration = new Configuration();
configuration.set("mapreduce.map.output.compress","true");
configuration.set("mapreduce.map.output.compress.codec","org.apache.hadoop.io.compress.SnappyCodec");
reduce阶段输出压缩配置
configuration.set("mapreduce.output.fileoutputformat.compress","true");
configuration.set("mapreduce.output.fileoutputformat.compress.type","RECORD");
configuration.set("mapreduce.output.fileoutputformat.compress.codec","org.apache.hadoop.io.compress.SnappyCodec");
  • 第二步:重新打包测试mr程序
    会发现MR运行之后的输出文件都变成了以.snappy的压缩文件
    Federation一个典型的例子就是上面提到的NameNode内存过高问题,完全可以将上面部分大的文件目录移到另外一个NameNode上做管理.更重要的一点在于,这些NameNode是共享集群中所有的DataNode的,它们还是在同一个集群内的。
    这时候在DataNode上就不仅仅存储一个Block Pool下的数据了,而是多个(在DataNode的datadir所在目录里面查看BP-xx.xx.xx.xx打头的目录)。
    概括起来:
    多个NN共用一个集群里的存储资源,每个NN都可以单独对外提供服务。
    每个NN都会定义一个存储池,有单独的id,每个DN都为所有存储池提供存储。
    DN会按照存储池id向其对应的NN汇报块信息,同时,DN会向所有NN汇报本地存储可用资源情况。
    HDFS Federation不足
    HDFS Federation并没有完全解决单点故障问题。虽然namenode/namespace存在多个,但是从单个namenode/namespace看,仍然存在单点故障:如果某个namenode挂掉了,其管理的相应的文件便不可以访问。Federation中每个namenode仍然像之前HDFS上实现一样,配有一个secondary namenode,以便主namenode挂掉一下,用于还原元数据信息。
    所以一般集群规模真的很大的时候,会采用HA+Federation的部署方案。也就是每个联合的namenodes都是ha的。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值