李宏毅机器学习课程梳理【五】:逻辑回归与神经网络

摘要

针对预测未知宝可梦类别,Discriminative比Generative准确率高问题,本文研究了Discriminative与Generative各自的优势。进而研究多个分类的方法步骤。最后根据Logistic regression的局限性,引入神经网络。

1 Discriminative与Generative比较

1.1 利用Naive Bayes Classifier分类举例

在这里插入图片描述
如图中给出的数据,求解需计算 P ( C 1 ∣ x ) P(C_1|x) P(C1x),根据贝叶斯公式计算得到的数小于0.5,故认为Testing Data应该属于Class2。Naive Bayes Classifier属于Generative Model,Generative认为之所以会出现这种结果是因为训练集数据太少,由此可窥见Generative的一些特点。

1.2 Discriminative与Generative的特点

P ( C 1 ∣ x ) = σ ( w ∗ x + b ) P(C_1|x)=\sigma(w*x+b) P(C1x)=σ(wx+b)

  1. Generative: 会根据数据假设一个概率模型,类似脑补。在下面三种情况结果会比Discriminative理想:其在训练集数据少时,准确率相对高,Generative受Data影响较小;其在训练集数据有噪声时,也就是label本来就有问题时,准确率相对高,Generative做一些假设,受噪声影响反而小;其在自然语言处理NLP中优势明显,因为Generative允许Prior与Class-dependent probability在收集数据时有不同来源(文字;声音)
  2. Discriminative: 直接找 w w w b b b,线性边界,完全依照Data

2 Multi-class Classification Opreation

以分类Class1,Class2,Class3为例,为每个class设不同的参数weight和bias,将model set记作 z 1 , z 2 , z 3 z_1,z_2,z_3 z1,z2,z3,它们能够取到任何值,将它们作为Softmax的输入,输出的 y 1 , y 2 , y 3 y_1,y_2,y_3 y1,y2,y3为对应分类的概率。过程如下图。
在这里插入图片描述
Softmax能强化差距,而输出的 y i y_i yi由于指数函数的作用,直接是概率,即 y i = P ( C i ∣ x ) y_i=P(C_i|x) yi=P(Cix)

3 Neural Network

3.1 由Logistic Regression想到Neural Network

有些训练集数据中class的feature选择得不合理,导致Logistic regression的线性边界无法得到分类结果。利用多层Logistic regression做Feature Transform解决,即组成了神经网络。在这里插入图片描述
上图中,以 x 1 , x 2 x_1,x_2 x1,x2作特征无法逻辑回归分类,但如果利用Sigmoid函数并不断调整参数,可以实现找到可以分类的 x 1 ′ , x 2 ′ x_1',x_2' x1,x2,再连接一个Sigmoid函数进行逻辑回归,得到分类结果。

4 展望

接下来将进行了解深度学习,训练神经网络等等的学习。

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值