GUROBI之数学启发式算法Matheuristics

参考运小筹的帖子:优化求解器 | Gurobi 数学启发式算法:参数类型与案例实现 - 知乎 (zhihu.com)

      简言之,数学启发式是算法就是数学规划和启发式算法的融合,与元启发式算法相比,数学启发式算法具有更强的理论性。

       在GUROBI求解器中,整体算法框架依然是数学规划算法,只是在其中的某些环节采用了启发式算法以更快获得可行解来加速算法收敛。

GUROBI求解MIP问题默认的框架是branch and cut,但是在 branch and cut tree 的探索中,在每个节点处,会调用30多种启发式算法,用于快速获得高质量的整数可行解,进而加速上界(min 问题)的更新Gap的收敛。此外,每个节点上也会调用二十多种 cutting plane 算法来生成割平面,收紧模型,逼近该节点的可行域的凸包,收紧下界。

以一个MIP问题的求解日志来说明GUROBI中的数学启发式算法:使用默认的求解方式,得到的求解日志如下:

presolve:代表在正式求解前对模型进行预处理,对模型进行简化

Incument:当前找到的最好的可行解

H 标注的代表使用启发式算法找到了新的可行整数解:红色框的一栏表示使用启发式算法找到了初始可行解462.2,此时算法找到的下界是357.53333,因此此时的gap为22.5%,求解历时1秒

* 标注的代表使用经典割平面法且找到了新的可行整数解

可见,GUROBI默认的求解过程中多次使用了数学启发式算法。

通过设置求解参数,我们也可以改变GUROBI求解过程中的一些细节:

model = read("VRPTW_r102_20_5.mps")
model.optimize()   #  不设置参数,默认方式求解


model = read("VRPTW_r102_20_5.mps")
model.setParam("MIPFocus", 1)   #  设置MIPFocus参数,具体含义见原帖
model.optimize()


model = read("VRPTW_r102_20_5.mps")
model.setParam("Heuristics", 0)  # 设置Heuristics参数
model.optimize()


model = read("VRPTW_r102_20_5.mps")
model.setParam("ZeroObjNodes",100)
model.optimize()

model = read("VRPTW_r102_20_5.mps")
model.setParam("PumpPasses",1000)
model.optimize()

model = read("VRPTW_r102_20_5.mps")
model.setParam("RINS",1000)
model.optimize()

总结:个人感觉针对不同的问题可能适合不同的参数设置,但更多的可能依靠的是经验值。

### YALMIP 中启发式算法的实现与应用 Yalmip 是一种高级建模语言,用于描述和求解各种类型的优化问题。尽管 Yalmip 主要专注于线性、二次以及混合整数规划等问题,但也能够调用外部求解器来执行更为复杂的启发式算法[^2]。 #### 使用 Yalmip 调用启发式算法的方法 对于某些特定类别的复杂组合优化问题,当标准求解器无法有效找到全局最优解时,可以通过集成第三方库或者自定义函数的方式,在 MATLAB 环境下利用 Yalmip 进行启发式搜索。这通常涉及到以下几个方面: - **选择合适的求解器**:虽然 Yalmip 自身并不直接提供启发式的求解机制,但是它允许连接到多个不同的求解引擎,比如 CPLEX 和 GUROBI 等商业级产品,这些求解器内部可能实现了高效的局部搜索或其他形式的近似算法。 - **编写定制化代码**:如果现有的求解器不满足需求,则可以在 MATLAB 中开发专门针对具体应用场景下的启发式逻辑,并将其嵌入到由 Yalmip 构造的问题框架之中。例如遗传算法 (GA),模拟退火(SA) 或者禁忌搜索(TS)。 ```matlab % 定义决策变量 sdpvar x(n) % 设置目标函数 Objective = ... % 用户指定的目标表达式 % 添加约束条件 Constraints = [...]; % 选择并配置求解器参数 options = sdpsettings('solver', 'cplex'); % 更改此处以适应其他求解器 % 解决问题 optimize(Constraints, Objective, options); ``` 需要注意的是,由于启发式方法本质上属于随机过程的一部分,因此每次运行的结果可能会有所差异。为了提高解决方案的质量,建议多次迭代尝试不同初始点或调整相关超参数设置。 #### 应用实例 在电力系统领域,特别是可再生能源如风电场、光伏发电站与储能设施之间的协调调度中,经常会遇到难以精确解析求解的大规模非凸优化难题。此时采用基于 Yalmip 的启发式策略可以帮助快速获得接近真实的可行方案,从而指导实际操作中的资源分配决策[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值