【Numpy】解决:关于 dtype=object 的含义及坑点

0.直接上两段代码:

C o d e 1 : Code1: Code1:

import numpy as np
a = []
e = 0.3
a.append(['s1', 's2', 's3', float(e)])
a = np.array(a)
print(type(a[0, 3]))

输出结果为: 输出结果为: 输出结果为:
<class 'numpy.str_'>

C o d e 2 : Code2: Code2:

import numpy as np
a = []
e = 0.3
a.append(['s1', 's2', 's3', float(e)])
a = np.array(a,dtype=object)
print(type(a[0, 3]))

输出结果为: 输出结果为: 输出结果为:
<class 'float'>

1.解释:

n u m p y numpy numpy数组存储为连续的内存块。它们通常有单一的数据类型(例如整数、浮点数或固定长度的字符串),然后内存中的位被解释为具有该数据类型的值。
创建 d t y p e = o b j e c t dtype=object dtype=object的数组是不同的。数组占用的内存现在充满了存储在内存其他地方的 P y t h o n Python Python对象的指针(很像 P y t h o n Python Python列表实际上只是对象指针的列表,而不是对象本身)。

2.文档原话:

n u m p y numpy numpy arrays are stored as contiguous blocks of memory. They usually have a single datatype (e.g. integers, floats or fixed-length strings) and then the bits in memory are interpreted as values with that datatype.
Creating an array with d t y p e = o b j e c t dtype=object dtype=object is different. The memory taken by the array now is filled with pointers to P y t h o n Python Python objects which are being stored elsewhere in memory (much like a P y t h o n Python Python list is really just a list of pointers to objects, not the objects themselves).

3.存在的坑点:

C o d e 1 Code1 Code1所示,如果多 a p p e n d append append几行后要对 n u m p y numpy numpy矩阵按照第三列排序时使用np.argsort()函数时 p y t h o n python python会默认按照str类型的字典序排序,影响最终排序结果!!!!且你如果不懂的话很难发现!!

22.08.04 22.08.04 22.08.04
♡ H a p p y   C h i n e s e   V a l e n t i n e ′ s   D a y   c h u i   c h u i ♡ \hearts Happy\ Chinese\ Valentine's\ Day_{\ chui\ chui}\hearts Happy Chinese Valentines Day chui chui

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Shihao Weng

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值