llama2的python视角

参数意义
batch_size:批量大小
seq_len:序列长度,也就是题主说的一条语料数据的长度啦
d_model: 序列中每个token的embedding向量维度
vocab_size:词表大小。也就是每个token在做embedding前的one-hot向量维度

在Transformer架构中,几个关键参数的意义如下:

1. **batch_size**:
   - 指的是在一次前向传播过程中同时处理的数据样本数量。例如,在训练神经网络时,通常不是一次性只用一个样本,而是将多个样本打包成一个批次进行计算,以利用并行计算的优势。所以`batch_size`是这个批次中的样本数。例如,如果`batch_size`设置为32,那么每次更新梯度时,网络会一次性处理32条不同的句子或序列。

2. **seq_len**:
   - 表示单个样本(如一句话或一段文本)中的最大序列长度。序列可以是一个单词序列、字符序列等。比如,如果我们处理的是一段英文文本,且最长句子包含100个单词,则`seq_len`就是100。这意味着 Transformer 在处理输入时会将其填充或截断至统一的100个时间步长。

3. **d_model**:
   - 是Transformer模型中嵌入层的输出维度或者说隐藏层维度,也即模型内部的特征维度。在词嵌入阶段,每个词会被映射到一个`d_model`维的向量空间中。例如,若`d_model`设置为512,那么每个输入的单词将会被表示为一个512维的向量。

4. **vocab_size**:
   - 指的是词汇表的大小,即模型能够识别的独特词汇数量。例如,在训练一个英文翻译任务的Transformer时,词汇表可能包含了所有可能出现的英语单词以及一些特殊符号(如未知词标记、开始符和结束符等)。如果词汇表有10,000个不同的单词,那么`vocab_size`就是10,000。这个值决定了模型最后一层的权重矩阵大小,用于将隐藏状态解码回原始的词汇形式。

举例说明:
假设我们正在训练一个Transformer模型来翻译英文句子到法文,我们的训练数据集包含如下参数:

- `batch_size = 32`:每次迭代时,模型会一起处理32句英文句子及其对应的法文译文。
- `seq_len = 20`:为了简化问题,我们设定每句话最多包含20个单词。
- `d_model = 512`:模型对每个单词使用512维的向量表示,并在此维度上进行复杂的注意力计算。
- `vocab_size = 30,000`:词汇表包含了30,000个英文单词和法文单词(包括特殊符号)。当模型在生成法文译文时,它会在最后通过一个大小为`(512, 30000)`的权重矩阵来预测下一个最有可能出现的法文单词。

1 调试代码

if __name__ == '__main__' :
    config = ModelArgs(dim=8, n_layers=2, n_heads=32, n_kv_heads=32, 
    vocab_size=32000, hidden_dim=None, multiple_of=256, norm_eps=1e-05, max_seq_len=3, dropout=0.0)
    model = Transformer(config)
    input_tokens = torch.randint(0, 32000, (1, 3))  # 单个样本,序列长度为128
    output_logits = model(input_tokens)

    print(f"Output logits shape: {
     output_logits.shape}")

2 关键代码

2.1 embedding层

参考

# 调用
h = self.tok_embeddings(tokens)

作用:
用于将离散的单词或标签等转换成一个固定大小的连续向量
ord_indexes 包含了词汇表中的单词索引,embedding_layer 创建了一个嵌入矩阵,每一行代表一个单词的向量。当索引通过嵌入层时,它会返回相应的词向量。

这段代码演示了如何创建一个 nn.Embedding 模块,并使用它来将一个包含索引的张量转换为相应的嵌入向量。具体步骤和作用解释如下:

创建 Embedding 模块

   embedding = nn.Embedding(10, 3)

这一行代码创建了一个 nn.Embedding 模块实例,参数设定如下:
num_embeddings=10表示词汇表大小,即有 10 个不同的单词(或其他离散符号)各自对应一个嵌入向量。
embedding_dim=3表示每个嵌入向量的维度为 3,即每个单词将被映射为一个三维向量

在创建过程中,模块会自动初始化这些嵌入向量,通常使用随机分布(如均值为 0、标准差为 1 的正态分布)生成初始值。

准备输入数据

   input = torch.LongTensor([
### 关于 LLaMA-Factory 和 Ollama 的 IT 项目或资源 #### 获取 LLaMA-Factory 和 Ollama 项目的 GitHub 地址 对于希望获取 `LLaMA-Factory` 和 `Ollama` 这两个项目的开发者来说,可以通过 Git 命令从 GitHub 上拉取这些开源项目的最新版本。 为了克隆 `ollama` 仓库到本地环境,可以执行如下命令: ```bash git clone https://github.com/ollama/ollama.git ``` 此操作会下载整个 `ollama` 项目至当前目录下[^1]。 而对于想要快速部署并使用 `LLaMA-Factory` 工具链的用户,则建议采用带深度参数的方式仅复制最新的提交记录来加速初始化过程: ```bash git clone --depth 1 https://github.com/hiyouga/LLaMA-Factory.git cd LLaMA-Factory pip install -e ".[torch,metrics]" ``` 上述脚本不仅能够高效地设置开发环境,还支持通过指定额外选项安装特定功能模块所需的 Python 库文件[^2]。 #### 修改配置文件以适应自定义需求 在某些情况下,可能需要调整默认设置以便更好地适配个人研究方向或是实验场景。例如,在 `identity.json` 中更新模型名称字段为 `"Llama-3"` 或者框架名属性设为 `"LLaMA Factory"` 来反映新的特性或改进之处[^3]。 #### 性能评估指标介绍 当涉及到对基于 LLaMA 架构构建的语言模型进行性能评测时,几个重要的度量标准被广泛应用于衡量不同算法间的差异性和优势所在。其中包括但不限于 ROUGE-N (N=1,2),用于计算候选摘要与参照文档间 n-gram 单元的一致性;以及 ROUGE-L ,它关注的是两者之间最长共同子串的比例关系。除此之外还有其他辅助性的统计项如预测耗时(`predict_runtime`)、每秒钟产出实例数目 (`predict_samples_per_second`) 等等,它们共同构成了全面评价一个自然语言处理系统的多维度视角[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值