2021-08-09

BBN:Bilaterial-Branch Network(CVPR2019)论文翻译

Introduction:
第一段:公开数据集是均匀的,但现实中有大量不均衡数据集。
第二段:采用类平衡来解决问题,有很多参考文献,重采样(26,1,14,11,2,7,21,4),重加权(13,30,5,23)
第三段:重采样会有过拟合与欠拟合的情况,重加权通过改变甚至反转数据呈现的频率来扭曲原始分布
第四段:前期的工作论证这两种方法的不好一面,在表征阶段和最后一层全连接层分别采用三种方法,ce、rw、rs,在cifar10-n50上进行验证,从图2中发现固定表征层时重平衡训练的分类器效果好于ce,在固定分类器上用ce训练表征层反而更好
第五段:提出bbn同时兼顾表征和分类器的学习,传统的采用均匀的采样器,bbn采用再平衡分支和反向采样器,通过自适应参数α,首先从原始分布中学习通用特征,然后逐渐关注尾部特征,进一步控制每个分支的参数更新
第六段:在广泛的研究中以及消融实验下(ablation studies)表明了模型的有效性,贡献如下:
1、根据问题发现了重平衡的能促进分类器学习,却阻碍了表征的学习,影响了原始分布
2、建立了bbn同时兼顾分类器和表征的学习,还提出新的累计学习策略
3、在四个数据集上验证我们的方法更好

Related Work:
第一段:重采样的研究,过采样是重复少数类别的数据(26,1,2)(会对少数过度拟合)(4,5),欠采样通过舍弃多数类别的数据(14,1,11)(削弱网络的泛化能力)
第二段:重加权的研究,分配较大的损失函数中尾部样本的权重(13,30),但是不能用于大规模数据集(20),cui采用了有效样本加权(5),cao采用了少数类别的边界(3)
第三段:最近有两阶段微调策略(3,6,22),一阶段在原始分布中训练,二阶段仅利用重平衡用较小的学习率进行微调
第四段:还有不同的学习方法,不做多介绍
第五段mixup:混淆(35)是一种数据增强方法,将图像与标签随机进行凸组合,生成额外的样本。manifold mixup(29)对流型特征空间进行增强,混合比率为β

How class re-balancing strategies work?:
第一段:还是在讲重平衡的策略优缺点
第二段:采用控制变量法进行实验
第三段:介绍cifar长尾数据集(3,5)
第四段:九组结果
第五段:九组结果

Methodology:
Overall framework总体框架:
bbn由三个组件组成,设计了两个分支(conventional learning branch 、re-balancing branch),两个分支采用相同的残差网络,共享除最后一个残差块的所有权重,x为训练样本,y为对应标签,C为类的数量。对于双边分支的每一个分支,采用均匀和反向采样器,获得两个样本传统分支(xc,yc)和再平衡分支(xr,yr),通过全局平均池化获得特征向量fc,fr。
还设计了一个累计学习策略,用于训练阶段在两个分支之间转移学习的注意力,通过自适应trade-off参数α控制fc和fr的权重,加权α*fc和(1-α)*fr,分别送到分类器,分别送到分类器wc和wr中。

Proposed bilateral-branch structure 两种分支的独特性:
data samplers:传统的学习采用均匀uniform的采样,保留原始分布的特征,有利于表征的学习。重平衡分支采用reversed的采样,提高尾部的分类精度。讲述反向采样的公式和步骤
weighes sharing:一方面传统分支的学习有利于重平衡分支的学习,另一方面大大降低计算的复杂度
Proposed cumulative learning strategy累计学习策略:
控制两个分支的特征权重和损失函数,提出累计学习的策略在双边分支之间转移学习焦点,首先学习通用模式然后关注尾部特征。随着epoch增加,α逐渐减小。bbn逐渐将学习重点从特征转向分类器,重点从传统分支转向重平衡分支,提高尾部的准确率。与两阶段微调策略(3,6,22)不同,α 确保在分 支中不断更新,避免一个目标进行训练时对另一个目标的影响。
Inference phase推理阶段:
将α固定为0.5,通过element-wise addition返回分类结果

Experiments:
Datasets and empirical settings:
cifar长尾数据集的介绍
inaturalist数据集介绍,除了不平衡问题还面临fine-grained细度的问题(34,37,32,33)

Implementation details:
Implementation details on CIFAR:数据扩充策略由(12)提出:从原始图像或其水平翻转中随机裁剪32×32个patch,每侧填充4个像素pixel,Resnet32,SGD,momentum 0.9,weight decay 2e-4,200个epoch,单个GPU,batch:128,第一个lr=0.1,后按照学习速率表(8),学习率在(120,160)衰减0.01
Implementation details on iNaturalist:采用resnet50(12),遵循(8)中的训练策略,在4GPU上,batch=128,我们首先通过将短边设置为256像素来调整图像大小,然后从图像或其水平翻转中进行224×224裁剪。学习率在(60,80)衰减0.1

Comparison methods:
在实验中,将BBN模型与三组方法进行比较:
Baseline methods:以ce和focal为baselines,还采用了一系列的mixup(35,29)进行比较实验
Two-stage fine-tuning strategies:为了证明累计学习策略的有效性,与两阶段的微调进行比较(3),第一阶段ce,第二阶段重平衡(ce-drw,ce-drs)
State-of-the-art methods:与LDAM(3)和CB(5)进行比较

Main results:
Experimental results on long-tailed CIFAR:表1证明了bbn的最佳
Experimental results on iNaturalist:在2017/2018上采用了2*的调度器的bbn

Ablation studies:
Different samplers for the re-balancing branch再平衡分支的不同采样器:对比了uniform、balance、reverse进行对比,发现再平衡分支用反向的取样器更
Different cumulative learning strategies:探索了几种不同的策略来生成CIFAR-10-IR50上的自适应权衡参数α,发现线性、余弦、抛物线衰变比等权、β、抛物线增量更好,这证明了应该先学习传统分支,再学习重平衡分支。最好的方法是抛物线衰减。更详细的讨论见补充材料

Validation experiments of our proposals:
Evaluations of feature quality:如表5所示,BBN的传统学习分支(“BBN-CB”)获得的特征表示与CE具有相当的性能,这表明我们提出的BBN极大地保留了从原始长尾数据集学习到的表示能力。BBN的重新平衡分支(“BBN-RB”)也比RW/RS获得更好的性能,这可能要归功于我们模型的参数共享设计。
Visualization of classifier weights:wi代表每一类的权重,将这些分类器“2-norm”可视化,可视了cifar10-50的10分类的“2-norm”(9),对于bbn,可视化了bbn-cb的权重、bbn-rb的权重以及bbn-all的权重,以及传统的ce、rw、rs的权重。可以得出,bbn-all基本相等,且标准差最小。ce的分布于长尾的分布一 致,rw、rs的标准差都大一点,bbn-rb刚好与反向长尾相同。

Conclusions
SUPPLEMENTARY MATERIALS:
在补充材料中,我们提供了我们提出的BBN模型的更多实验结果和分析,包括:
A、在大型数据集iNaturalist 2017和iNaturalist 2018上进行不同表示和分类器学习方式的附加实验(参见本文第3节和图2):

B、再平衡策略对学习特征紧凑性的影响:证明重平衡会破坏通用的表征,重平衡的平均距离大于常规训练,尤其是头部数据,重平衡学习特征的紧凑性弱于传统训练。重新平衡策略,“每个类别的类内分布变得更可分离,在某种程度上损害所学深层特征的普遍代表性能力,对于头部类,使用CE训练的表示比使用RW/RS训练的表示更接近,因为每个类的表示更接近其质心。垂直轴是每个类别的学习特征与其相应质心之间的平均距离(越小越好)。

C、BBN模型与系综方法的比较:α>0.5表征学习为重点,α<0.5分类器为重点,

D、生成α的不同适配器策略的坐标图;

E、我们提出的BBN模型的学习算法:

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值