Breast cancer detection in rotational thermography images using texture feature

基于纹理特征的旋转热成像图像乳腺癌检测

Abstract

乳腺癌是发展中国家年轻妇女死亡的主要原因。早期诊断是提高癌症患者生存率的关键。乳腺热成像是一种诊断程序,它对乳腺表面的红外辐射进行非侵入性成像,以帮助早期发现乳腺癌。由于成像协议的限制,通过常规乳腺热像图检测异常通常是一项具有挑战性的任务。旋转热成像是为了克服传统乳房热成像的局限性而发展起来的一种新技术。本文从冷激发的角度评估了这项技术自动检测乳房异常的潜力。在应用冷激发之前和之后,从旋转温度图序列中提取空间域中的纹理特征。这些特征被输入到支持向量机中,用于正常和恶性乳房的自动分类,分类准确率为83.3%。通过主成分分析进行特征约简。作为一种新的尝试,人们研究了这种技术定位异常的能力。研究结果表明,旋转热成像作为乳腺癌检测的筛查工具具有巨大潜力。

Introduction

乳腺癌是导致女性高死亡率的最常见癌症类型[1]。早期发现是最重要的,因为它显著提高了生存的机会。在最近的一项研究中,比较了各种乳腺成像技术的早期检测能力[2]。由于传统成像方式的固有局限性,正在为此目的评估替代技术。热成像技术是一种被证明非常适合于乳腺癌早期检测的技术[3],特别是在乳房致密的年轻女性中。据报道,乳房热成像可以检测到乳房X射线摄影遗漏的小肿瘤(小于1.66 cm)。

乳腺热成像是一种非侵入性的诊断方法,它可以对乳腺表面的温度变化进行成像,以帮助早期发现乳腺癌。这项技术的原理是,正在发生的乳腺癌周围区域的化学和血管活动高于正常乳腺。这一过程导致乳房表面温度升高[5]。这些温度变化和血管变化可能是乳房异常的最早迹象之一。最先进的乳房热成像技术使用高灵敏度红外摄像机和复杂的软件生成这些温度变化的高分辨率图像[6,7]。与标准乳房X光摄影不同,该手术舒适且安全,因为它不涉及痛苦的乳房压迫或电离辐射照射。温度特征在区分异常乳房和正常乳房方面的能力已得到证明[8,9],并对早期检测能力进行了分析[10,11]。

最近的一项调查比较了传统乳腺热像图检测乳腺癌的各种图像处理方法[12]。几种分割算法已被用于提取成功率适中的感兴趣区域[13–20]。纹理特征已被用于训练人工神经网络(ANN)对乳房温度图进行分类[21]。纹理特征的不对称性分析已经完成,以自动分类热图[22,23]。纹理特征代表表面温度变化的能力已用热占星术解释[24]。Acharya等人使用支持向量机(SVM)提取纹理特征,以检测常规热图中的异常[25]。一阶统计特征[26],偏斜度、峰度和熵等高阶统计特征[27]也被用于异常乳房状况的自动分类。Wiecek等人[28]使用基于双正交和Haar母小波的离散小波变换的特征进行分类。高阶谱(HOS)特征[29]、双谱不变特征[30]和分维特征[31]最近被用于解决该问题。模糊分类器[32]、独立成分分析[33]和决策树[34]也用于分类目的。案例研究表明,正常、良性和恶性乳房的温度曲线存在显著差异[35]。在小波[36]和Curvelet[37]域中提取的纹理特征也用于对热图进行分类。Sudharsan和Ng通过对乳腺的数值模拟对乳腺癌的检测进行了广泛的研究[38–42]。

由于乳房成像不完整和图像分割算法无效,传统乳腺热像图的解释仍然非常主观。旋转热成像技术是在传统热成像技术的基础上发展起来的一种新技术,旨在克服这些局限性。已经进行了一项初步研究,以评估该技术在自动检测乳房异常方面的潜力。本文从冷激发的角度分析了从旋转乳房温度图中提取的空间域统计特征。这些特征被输入支持向量机分类器,用于正常和异常乳房的自动分类。

Rotational breast thermography

在传统的乳房热成像技术中,患者被要求坐在摄像机前一定距离。乳房的红外图像是在三个不同的视图中拍摄的,即对侧、中侧斜和腋窝。由于正常的乳房下垂,在这些视图中,乳房后下部区域没有完全成像。因此,这些区域的肿瘤通常不被发现。为了使热像图的解释更加客观,对成像设置和协议进行了修改,从而产生了旋转乳房热像图。在这项技术中,乳房从多个角度成像,这样就不会遗漏异常。一种特殊的装置,称为红外线热成像系统(MAMRIT)是为获取乳房热成像图像而设计的。让受试者舒适地俯卧在MAMRIT装置上,一个乳房通过一个小圆孔自由悬挂在一个腔室中。这确保了患者的舒适度,并减少了因患者移动而产生的伪影。在MAMRIT手术室内,一个机械臂围绕着悬吊的乳房顺时针旋转。固定在末端的红外摄像机从不同角度拍摄乳房图像。因此,整个乳房表面的温度信息被捕获,确保乳房的完整成像。室内环境温度和湿度由内置空调控制。按照制造商的建议,对相机进行黑体校准,以确保测量的准确性

据观察,从乳头到胸壁,有一个连续的温度带延伸到正常乳房。当该温度模式受到干扰时,检测到异常情况[43]。

Materials and methods

Image acquisition

对24例正常人和12例恶性肿瘤患者的乳腺热像图进行分析。在本研究中,仅使用了右乳和左乳的预冷和后冷系列。这些图像是在知情同意的情况下,使用ICI7320P非致冷照相机拍摄的,并采用经批准的方案[44]。所有因怀疑乳房异常而转诊至乳腺诊所的患者均接受旋转热成像程序。所有患者还进行了超声扫描,以使结果相互关联。

当一个正常的乳房受到突然的寒冷挑战时,流向其表面的血液通过较深的静脉重新定向。这导致该区域的表面温度瞬间降低。覆盖在肿瘤上的乳房表面不受这种调节性血管收缩的影响。

因此,与正常组织不同的是,这些区域的表面温度即使在受到冷刺激时也会持续存在[45]。这种超高温表面的红外辐射将在热谱图上显示出细微但明显的异常模式。

本研究基于这样一个假设,即应用冷激发技术将提高基于体温图的自动乳腺癌检测系统的效率。因此,从预冷和后冷温度图中提取统计图像特征。将其用于SVM分类器的训练,并对结果进行了比较。由于该系统在多个视图中整合了完整的乳房成像,因此还尝试分析其定位异常位置的能力。工作大纲如图1所示。

Pre-processing

根据成像协议获取乳房温度图,并将其转换为灰度。正常乳房在冷激发前后的体温图如图所示。2a和2b。据观察,正常乳房的温度变化遵循分层模式,乳头是最冷的区域。从乳头到胸壁,整个乳房的温度都会升高。应用冷激发前后的异常温度图如图所示。3a和3b。可以观察到,较温暖的区域突出到较冷的层中,表明存在高温区域。由于在恶性肿瘤的早期,与正常模式的偏差是相当细微的,这些异常可能无法通过对热像图的直接视觉解释来发现。

此外,血管系统增加的正常乳房通常是高温的,可能被误解为异常。因此,主观解释的热像图往往导致错误的诊断。因此,为此需要自动检测系统。

由于每个乳房在12个视图中成像,每个视图的空间/角度步长为30,因此在中心简单裁剪30%就足以覆盖整个乳房表面。此外,由于乳房是俯卧位成像,这些图像中不存在常规热像图上显示的正常温暖区域,如颈动脉、臂窝和乳内皱襞。因此,不需要使用分割算法来消除这些区域。如图所示,裁剪整个乳房区域的中央30%以形成ROI。2c和3c。

Feature extraction in spatial domain

纹理特征被广泛应用于乳腺癌检测中,因为它们可以非常有效地表示乳房的温度变化。在这项工作中,一阶统计特征和纹理特征提取从乳腺热图在空间域。

从ROI中提取统计特征,即均值、方差、偏度和峰度。通过构造灰度共生矩阵(GLCM)检查图像纹理[46]。GLCM通过计算像素对以预定义的空间顺序出现的频率来表征图像的纹理。计算并归一化ROI的GLCM。然后从归一化的GLCM中提取Haralick等人[47]提出的纹理特征。其中包括角二阶矩(ASM)、对比度、相关性、平方和、差分反矩、和平均值、和方差、和熵、熵、差方差、差熵、相关信息度量1、相关信息度量2。

Feature reduction by principal component analysis

从每个热图中总共提取了17个特征,以形成特征向量。主成分分析(PCA)用于特征约简。PCA通常在特征集非常大或包含冗余特征时使用。当使用较少的特征进行训练和测试时,分类器的速度可以提高,复杂性可以降低。主成分分析是一种统计过程,它使用正交变换将一组可能相关变量的观测值转换为一组称为主成分的线性不相关变量。主成分的数量小于或等于原始变量的数量。第一个主成分具有最大的可能方差,而在与前面的成分不相关的约束下,每个后续成分又具有最大的可能方差。

Classifier

从温度图中提取的空间域特征被表示为特征向量或模式。在一个两类问题中,样本由正常组和异常组的热像图获得的模式组成。这些特征向量用于训练支持向量机分类器。支持向量机是一种监督学习方法,在模式识别问题中表现良好。利用支持向量机进行分类,利用核函数将输入数据转化为高维特征空间。因此,与原始输入数据相比,转换后的数据变得更加可分离。漏掉一个方法已用于验证分类器的性能。该方法使用一个类中的单个特征向量作为验证数据,样本中的所有剩余向量作为训练数据。重复此操作,以便将样本中的每个特征向量作为验证数据使用一次。

Results and discussion

首先,分析从第一组12例正常病例中获得的体温图。研究发现,正常乳房的温度分布遵循分层模式。乳头处的温度最低,胸壁附近的温度最高。旋转热成像图像以悬浮正常乳房的不重叠伪彩色映射带的形式表示该温度梯度。异常的乳房温度图偏离了正常模式,较热的带以微妙的方式突出到较冷的带中。这些模式变化以一阶统计和纹理特征的形式从ROI中提取。ROI是从每个患者在两个乳房的所有视图中应用冷激发前后获得的温度图序列中获得的。

首先,使用表1中给出的学生t检验研究了冷挑战对给定班级的影响。从表1可以看出,在正常组中,大多数特征在统计学上不显著(p>0.05)。因此,可以推断正常乳房对冷刺激没有反应。在异常组中,大多数特征显著(p<0.05)。

因此,预计从异常乳房中提取的纹理特征值对冷激发的应用有显著的响应。但在个案基础上观察时,发现这些变化在方向或幅度上都高度不一致。这可以从图中观察到。4和5,其中分别为12名患者绘制了相关特征图,分别属于冷激发前后的两组。其次,在95%置信水平下,采用student t检验研究了空间特征对正常和恶性体温图的鉴别能力。该研究使用冷激发前和激发后提取的特征值进行。表2和表3分别给出了预冷和后冷条件下正常组和异常组中每个特征的平均值。表格还显示了两种情况下每个特征的统计显著性。

从表2和表3中可以发现,在冷激发之前,大多数特征(标有)都是显著的(p<0.05)。对于冷却条件之间的差异值,仅发现三个特征,即平方和、和平均值和和方差,具有统计显著性。

作为说明,在图6的预冷条件和图7的后冷条件下,绘制了正常和异常患者的相关特征值。从图6可以看出,与预冷条件下的正常温度图相比,异常温度图平均显示出较低的相关性。然而,如图7所示,这些值在后冷却条件下以混沌方式完全重叠。

该特性在预冷条件下(p=0.0054)具有统计显著性,在后冷条件下(p=0.1276)不太显著。后冷条件下较大的p值可能是由于应用冷激发时特征值变化不一致所致。因此,这项研究证实,温度降低2–3摄氏度并不能提高乳腺热像图异常检测的效率。

第三,采用留一法对SVM分类器进行训练和测试。分类使用三类数据,即冷激发前提取的特征、激发后提取的特征以及两种条件之间的差值。分类器的性能如表4所示。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值