知识点:乘法逆元

文章介绍了模运算的性质,指出除法模运算不一定成立的问题,并提出了乘法逆元的概念来解决这个问题。乘法逆元允许我们将除法转化为乘法,通过费马小定理和扩展欧几里得算法可以求解逆元。文章提供了Java代码示例来计算逆元。
摘要由CSDN通过智能技术生成

乘法逆元

一、模运算的性质

  • ( a + b ) % p = ( a % p + b % p) % p
  • ( a + b ) % p =( ( a % p + b % p ) % p + p ) % p

注意:此处与上一个不一样,(9-7)%8=(9%8-7%8)%8=-6 ;不是我们要的值,这时要加上p

  • ( a * b ) % p = ( ( a % p ) * ( b % p ) ) % p

二、除法的模运算

1、除法模运算

(a/b)%p=(a%p)/(b%p) ,如果我们保证可以整除,它是否成立呢?

取a=8,b=2,p=6; 左式=4,右式=1;也就是说 除法的模运算不一定成立。

2、解决除法模运算问题

​ 能否将除法转化为乘法?找到 binv ,使得 ( a / b ) % p = = ( a ∗ b i n v ) % p (a/b)\%p==(a*b_{inv})\%p a/b%p==(abinv)%p ;若能,则称 b i n v b_{inv} binv为 b在模p意义下 的乘法逆元 ;

三、乘法逆元

1、定义

​ 若在mod p意义下,对于一个整数a,有 ( a ∗ b ) (a*b)%p=1 (ab),那么这个整数b即为a的 乘法逆元,同时a也为b的乘法逆元。一个数有逆元的充分必要条件是gcd(a,p)=1,此时a才有对p的乘法逆元

2、逆元是干什么的呢

​ 首先对于除法取模不成立,即$ (a/b)%p!=(a%p)/(b%p)$。显然数学家们是不能忍受这种局面的,他们扔出了“逆元”来解决这个问题。因为取模运算对于乘法来说是成立的,逆元就是把除法取模运算转化为乘法取模运算。
( a / b ) % p = m ( 1 ) ( a × x ) % p = m ( 2 ) (a/b)\%p=m (1)\\ (a \times x)\%p=m (2) (a/b)%p=m(1)(a×x)%p=m(2)
(1)模运算对乘法成立,对①式左右两边同时乘以b,得到
a % p = ( m × b ) % p a\%p=(m \times b)\%p a%p=(m×b)%p
(2)如果a和b均小于模数p的话,上式得到:
a = m × b a = m \times b a=m×b
(3)等式两边同时乘以 x x x,联立②式得到:
( a × x ) % p = m % p = ( m × b × x ) % p ( b × x ) % p = 1 (a \times x)\%p = m\%p=(m \times b \times x )\%p \\ (b \times x)\%p = 1 (a×x)%p=m%p=(m×b×x)%p(b×x)%p=1
即x就是b的逆元。(根据逆元的定义可知)总结:求取 ( a / b ) (a/b)%p (a/b)等同于求取 a × ( b 的逆元 ) a \times (b的逆元)%p a×(b的逆元),因此,求模运算的除法问题就转化为求解一个数的逆元问题。

四、求解逆元

求解一个数的逆元有两种方法:费马定理和扩展欧几里得

1、费马小定理

因为在算法竞赛中模数p总是质数,所以可以使用费马小定理。
b p − 1 % p = 1 b^{p-1}\%p=1 bp1%p=1
可以得到 b × b p − 2 % = 1 b \times b^{p-2}\%=1 b×bp2%=1,所以 b p − 2 b^{p-2} bp2是b在mod p条件下的逆元

public class PowUtil {

    public static Long quickPow(Long a,Long n,Long p){
        //结果
        Long res = 1L;
        while (n != 0) {
            //判断 n 的二进制的最后一位是否为0
            if((n&1)!=0){
                //当n的二进制最后一位为1时,乘以当前的权重
                res = (res*a)%p;
            }
            //更新n,每次n向右移一位
            n = n >> 1;
            //更新每一位的权重
            a = (a*a)%p;
        }
        return res;
    }

}

public class InverseElement {

    /**
     * 利用b^(n-1)%p=1求解b的逆元
     * @param a 质数
     * @param p 模数
     * @return a的逆元
     */
    public static Long inverseElement(Long a,Long p){
        //quickPow()是快速幂函数
        return PowUtil.quickPow(a,p-2,p);
    }

}
2、扩展欧几里得

(1)扩展欧几里得算法:求ax+by=gcd(a,b)的一组x,y

(2)求a在模p意义下的乘法逆元:
( a × a i n v ) % p = 1 a × a i n v + p × y = 1 g a d ( a , p ) = 1 (a \times a_{inv})\%p=1 \\ a \times a_{inv} + p \times y = 1\\ gad(a,p)=1 (a×ainv)%p=1a×ainv+p×y=1gad(a,p)=1

代码展示

void exgcd(ll a, ll b, ll &x, ll &y)    //拓展欧几里得算法
{
    if(!b) 
        x = 1, y = 0;
    else
    {
        exgcd(b, a % b, y, x);
        y -= x * (a / b);
    }
}

ll niyuan(ll a, ll b)   //求a对b取模的逆元
{
    ll x, y;
    exgcd(a, b, x, y);
    return (x + b) % b;
}



五、参考文献

[1] 乘法逆元超详解

[2]乘法逆元

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值