隐马尔可夫 观测序列概率 之后向算法

后向概率

后向概率与前向概率非常类似,也是基于动态规划的思想,下面介绍一下:

首先给出定义:定义(后向概率)给定隐马尔可夫模型 λ,定义在**时刻 t 状态为 qi**的条件下,从t+1到T的部分观测序列为Ot+1, Ot+2, …, OT的概率为后向概率,记作在这里插入图片描述
可以用递推的方法求得后向概率βt(i)及观测序列概率p(o|λ),下面给出后向算法的算法流程。
在这里插入图片描述

  • (1)初值
    在这里插入图片描述
    根据定义,从T+1到T的部分观测序列其实不存在,所以硬性规定这个值是1。(这个很重要)
    神仙规定

  • (2) 对t = T-1,T-2,…1在这里插入图片描述
    (在学习的过程中一定要记住每个符号代表什么意思,做到心中有数,所以就不标明指什么了,让自己不断回忆)

  • (3)
    在这里插入图片描述
    最后的求和是因为,在第一个时间点上有N种后向概率都能输出从2到T的观测序列,所以乘上输出O1的概率后求和得到最终结果。

慢慢分析

步骤(1)初始化后向概率,对最终时刻的所有状态 qi 规定 βT(i) = 1,其实前项概率和后向概率相当于起点和终点互换,因为隐马尔可夫第一个问题与观测序列计算的前后顺序无关,所以我们可以从前算,也可以从后算。

步骤(2)是后向概率的递推公式,如下图所示,在这里插入图片描述
是不是很熟悉。步骤和思路是一样的。

一些概率与期望值的计算

利用前向概率和后向概率,可以得到关于单个状态和两个状态概率的计算公式。

  1. 给定模型 λ 和观测 O, 在时刻 t 处于状态 qi 的概率, 记在这里插入图片描述
    可以通过前向后向概率计算,事实上。
    在这里插入图片描述
    贝叶斯公式。
    由前向概率αt(i) 和 后向概率 βt(i) 定义可知:
    在这里插入图片描述
    于是得到:
    在这里插入图片描述

  2. 给定模型λ 和观测 O, 在时刻 t 处于状态 qi 且在时刻 t + 1处于状态 qj 的概率, 记在这里插入图片描述
    可以通过前向后向概率计算:
    4.
    由前后向概率定义可知,如下图,前向概率是当 t 时刻状态为 qI , 前观测序列为 O! , O2 …Ot的概率,而后向概率是状态为 qi ,而观测序列取后边的概率。二者结合:
    在这里插入图片描述
    在这里插入图片描述
    即为 t 时刻处于状态 qi 和 观测序列为 O 的概率。于是得到:

在这里插入图片描述
解释一下分母, 其实就是指所有的状态下的 观测序列, 即 i = qi 此时概率为 1.

  1. 给定模型 λ 和观测 O ,在时刻 t 处于状态 qi 且在时刻 t+ 1 处于状态 qj 的概率, 记:在这里插入图片描述
    可以通过前向后向概率计算:

在这里插入图片描述
还是灵活应用贝叶斯公式:

分母指的是把 t 时刻的状态可能与 t + 1时刻的状态可能组合起来。

在这里插入图片描述
其实也不是很难理解,其实就是将现有的概率组合起来构成左边式子的所有可能性。
在这里插入图片描述
所以在这里插入图片描述

  1. 将 γt(i) 和ξ t(i, j) 对各个时刻 t 求和, 可以得到一些有用的期望值:在这里插入图片描述
  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值