哈密顿算子的计算公式及一些常用公式总结

本文介绍了哈密顿算子的定义、梯度、散度和旋度在数量场和标量场中的应用,以及它们的微分性质和常见公式,如旋度乘积和拉普拉斯算子的推导过程。
摘要由CSDN通过智能技术生成

目录

哈密顿算子的定义式如下:

梯度定义:

散度定义:

旋度定义:

常用的一些公式:


注意文中字母上面没有→的是标量,有→的都表示矢量

哈密顿算子的定义式如下:

快速了解哈密顿算符:数量场(标量场)的方向导数及梯度推导、哈密顿算符定义-CSDN博客

梯度定义:

快速了解梯度:数量场(标量场)的方向导数及梯度推导、哈密顿算符定义-CSDN博客

散度定义:

快速了解散度:矢量场的散度----通量和散度概念讲解-CSDN博客

旋度定义:

快速了解旋度:矢量场的旋度----环量和旋度-CSDN博客

常用的一些公式:

哈密顿算子满足微分性质,所以我们可以根据微分算子来推导哈密顿算子的一些公式

$d(u\pm v)=du\pm dv$    ,     $d(uv)=u\cdot dv+v\cdot du$

旋度乘旋度,拉普拉斯算子,旋度乘梯度,梯度乘旋度计算

旋度乘旋度,证明过程如下:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值