GRNN广义回归神经网络以及相关概念
https://blog.csdn.net/zengxiantao1994/article/details/72787849
https://blog.csdn.net/guoyunlei/article/details/76101899参考博客
小小白入坑系列,欢迎大佬的指教!
算法网上铺天盖地的,我只是把自己对算法的理解和学习经验发到了这个帖子里面
把GRNN和RBF做一个对比,就会发现有以下区别:
- 在实现上面,GRNN仅与RBF的输出层不同
- 都对非线性数据具有很好的拟合效果
- 在实际拟合过程中,数据比较优秀的时候,RBF的效果很好,不过在数据精准度比较差的时候,GRNN有很大优势,因为GRNN用的非参数估计进行后续的概率处理。
GRNN理论基础(汇总)

根据简单的概率论公式我们就能看懂上面的表达式,因为我们要用到parzan非参数估计,所以这里还是记录一下概率密度估计的一些内容(碎碎念,可以pass)
经典的参数估计:极大似然估计
这个是很多入手算法的朋友都会听过的概念,最经典的就是有一本书叫《概率机器人》里面有详细解读。
一切还是要从贝叶斯概率说起

后验概率 = (似然性*先验概率)/标准化常量。
这个式子告诉我们什么:我们在知道经验基础上可以推断出后续将要发生的事情的概率。
P(A):先验概率,表示每种类别分布的概率。
P(B|A)

本文对比分析了广义回归神经网络(GRNN)与径向基函数(RBF)在网络实现、非线性数据拟合效果及数据精准度方面的区别。重点介绍了GRNN在数据精准度较差时的优势,并深入探讨了GRNN的理论基础,包括非参数估计、parzen窗口估计及k临近估计等关键概念。
最低0.47元/天 解锁文章
1946

被折叠的 条评论
为什么被折叠?



