机器学习 day02(四)

三、lasso回归

1、原理

在这里插入图片描述
【拉格朗日乘数法】
对于参数w增加一个限定条件,能到达和岭回归一样的效果:
在这里插入图片描述
在lambda足够小的时候,一些系数会因此被迫缩减到0

  1. 定义一系列的缩减系数,创建Lasso模型
    在这里插入图片描述
    x轴的取值范围为log10-10 ~ log10-2

  2. 绘制图像
    在这里插入图片描述
    查看图像
    在这里插入图片描述

  3. 缩减范围
    在这里插入图片描述
    查看图像
    在这里插入图片描述
    从图像中可以发现,引入的惩罚项的系数λ在不断缩减,当取值范围大于log10-1 后趋近于0,趋于稳定

四、普通线性回归、岭回归与lasso回归比较

1. 使用numpy创建一些数据

在这里插入图片描述
随机打乱200个数,将打乱的200个数中取前190个设置为0

2. 自定义线性回归

在这里插入图片描述

3. 分别创建三种模型,并且训练预测

  1. 普通线性回归模型
    在这里插入图片描述
  2. 岭回归模型
    在这里插入图片描述
  3. Lasso回归模型
    在这里插入图片描述

4. 画出三种回归系数和真实的系数之间的对比图

在这里插入图片描述
查看图像
在这里插入图片描述
通过图像对比,在这个模型中, Lasso回归是最接近的,所以在这个模型中,用 Lasso回归是最好的选择

五、练习

预测鲍鱼的年龄

1. 导入数据

这是一个无头数据,前7列数据是鲍鱼的一些体质特征,第8列数据是鲍鱼的年龄
在这里插入图片描述

2. 创建普通线性回归模型

在这里插入图片描述

3. 训练并进行预测

在这里插入图片描述

4. 查看误差

在这里插入图片描述
可以发现,这个模型没有过拟合

预测一只鲍鱼,特征如下:
在这里插入图片描述
这个数据给的有点离谱,预测的话,年龄是87岁左右

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值