Multi-Objective Interpolation Training for Robustness to Label Noise

Multi-Objective Interpolation Training for Robustness to Label Noise

Abstraction

多目标插值训练
联合利用对比学习和分类

Introduction

  1. Multi-Objective Interpolation Training (MOIT), a framework to robustly learn in the prese of label noise by jointly exploiting synergies between contrastive and semi-supervised learning.对比学习+半监督学习
    • 对比学习:引入对比损失的正则化,最终用于半监督学习
    • 半监督学习:进行稳健的图像分类

Method

主要框架入如下
在这里插入图片描述

  1. Interpolated Contrastive Learning(ICL内插对比学习)
    增强数据的混合视图:
    在这里插入图片描述
    在对比损失中施加线性关系
    在这里插入图片描述
    Li这个公式没有完全理解,本身表示的是类似交叉熵的损失函数。(yi=yj时取1说明是对相同标签的不同样本进行判断?)
    在这里插入图片描述
    zi是经过编码和投影变换到的低维度输出,需要综合考虑样本ab(根据λ);
    相同标签的噪声样本和干净样本可以直观的发现。如果二者分别为ab,a对应的特征是会得到另一个类别的标签,而二者混合的视图对应的标签是一致的。因为嘈杂的样本被插入另一个干净的样本,使得另一个嘈杂的样本使得更难记住嘈杂的模式。
    如果正负样本过少,对模型会产生负面影响。将 2N 个样本与 M 个内存中样本进行对比,对比方式同上,产生LMEM
    在这里插入图片描述
  2. Semi-Supervised Classification:Label noise detection
    测量zi与yi的一致性(k-NN算法)
    在这里插入图片描述
    估计矫正分布P^
    在这里插入图片描述
    其中
    在这里插入图片描述
    计算p^与yi的交叉熵
    在这里插入图片描述
    选择一定比例的样本
    在这里插入图片描述
    根据不同类别下的中位数作为阈值γc,来平衡不同样本的分布
  3. Semi-Supervised Classification:Semi-supervised learning
    在这里插入图片描述
    在这里插入图片描述
    在此部分,用样本a和样本b计算交叉熵,如果标签在Dc中,则使用ya的标签,否则视为不干净的标签,我们使用模型输出的预测值进行计算
    hi应该是ha和hb加权计算的结果,没注意到在哪里出现。。。
  4. 最终的loss
    在这里插入图片描述
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值