论文阅读:Learning from Noisy Labels with Complementary Loss Functions

本文探讨了在处理带有噪声标签的数据时,交叉熵损失函数(CELoss)容易过拟合,而均方误差(MAE)损失函数可能欠拟合的问题。作者提出结合两者,利用互补损失函数来改善模型训练。在预热阶段使用CELoss,后续阶段则引入稳定输出的简单样本和困难样本,通过集成学习和伪标签策略减少过拟合,提高学习效率。实验表明,这种策略在复杂数据集上表现更优。
摘要由CSDN通过智能技术生成

Learning from Noisy Labels with Complementary Loss Functions


整理了文章的关键内容,内容源自 Learning from Noisy Labels with Complementary Loss Functions

Abstract

  • 鲁棒损失函数:容易发生欠拟合,可能不能完全学习到数据集的特征
  • CE交叉熵损失函数:容易过拟合,通过迭代会过拟合噪声标签
    作者联合两种损失函数进行训练,实现互补

Introduction

  1. 作者将现在的噪声处理方式分为以下四大类:
    • label transition matrix噪声转移矩阵
    • importance reweighting样本重新加权
    • self/co-training strategy从模型本身或协同学习的模型中学习
    • the robust loss functions鲁棒的损失函数
  2. robust loss functions可以有效防止过拟合,但会出现欠拟合问题;
    CELoss不易出现欠拟合,但在噪声数据集中会过拟合;
    已经有相关工作将二者结合,但是其只有部分鲁棒,对复杂数据集效果不佳

Method

  1. 现有方法的假设:标签噪声是均匀或者类相关的
  2. CE和MAE在噪声鲁棒性上:
    在这里插入图片描述
    如果考虑样本类别的整体分布是均匀的
    在这里插入图片描述
    可以发现MAE满足对称条件,在文献中可以知道MAE对满足假设的噪声是鲁棒的
    相反CELoss是标签敏感的
  3. CE和MAE在学习效率上:
    CE和MAE对模型参数求梯度:
    在这里插入图片描述
    显而易见,当在干净的数据集中,fj(x)如果很小(不接近1,预测不准),那么CE带来的梯度很大;但是MAE对所有预测的态度是一致的,因此拟合速度较慢,容易欠拟合
    欠拟合问题导致归一化loss不能独立作为loss函数
  4. 给出结论,即loss函数的选取是在过拟合和欠拟合中找折中
  5. Learning with Complementary Loss Functions
    主要算法:
    在这里插入图片描述
    Twarmup之前,模型可以直接从原始数据集用CELoss直接学习
    Twarmup之后,CELoss有过拟合趋势,此时采用Complementary Loss
  • Eq(7):
    在这里插入图片描述
    多个模型输出的平均值作为预测值(集成学习产生)
  • 生成伪标签数据集 B ~ \tilde{B} B~
    在这里插入图片描述
  • 作者认为简单的样本在不同的学习迭代中具有稳定的输出,困难的样本具有不稳定的预测
    作者使用熵较低的预测值作为新一轮的伪标签数据集 B ~ \tilde{B} B~
    在这里插入图片描述
  • 选择一定的硬样本作为补充
    在这里插入图片描述
  • 计算总的loss
    在这里插入图片描述

Reason

  1. 简单样本在不同时期一般具有稳定的输出。简单学习了数据集的结构特征后,可以有效生成一些伪标签来使得CELoss的过拟合趋势减小
  2. 硬样本可能带有边界相关的决策知识,作者发现用简单样本,硬样本和随机样本的训练如下,纯简单样本效果不如另外两个
    在这里插入图片描述
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值