POJ-1988-Cube Stacking

POJ-1988-Cube Stacking

传送门

这道题是并查集啦~

题目大意:初始化的时候单独的列上只有一个方块。
给出两个操作:
1.移动操作。(a, b)将a上的一整列移动在b的上面
2.询问操作。a 计算a下面有多少方块
t次询问

平常思路路径压缩的时候我们直接把当前结点的父结点fa[]赋值为根结点了。
这道题。我们在两个结点结合的时候比如M x, y。x的那一列移动到y的上面。
我们需要把y的根结点yy的父结点改为x的最底端的结点。
这样操作的话。。压缩起来很不方便。。如果不压缩就会tle。。

我们用cnt[]数组标记以当前结点为根时树下有多少结点。
dis[]记录当前结点到根结点的距离。
fa[]就是很普通的并查集的操作。

初始化:dis[]全部为0.毫无疑问
cnt[]初始化为1.当前子树只包含当前的一个节点。
fa[]初始化为自己就不用我说了哈~

我们在find()查找更新dis[]:dis[当前结点] += dis[当前结点的原父结点];
我们要把当前结点的原父结点先记录下来。

在mix()函数合并时dis[],cnt[]全部都要更新:
x的父结点xx,y的父结点yy
cnt[xx] += cnt[yy];当前树的结点个数的更新
dis[yy] = cnt[xx];当前yy到根结点距离的更新;
注意我们这里只更新了原先的两个根结点。其余结点并没有更新。
所以输出的时候不能直接输出cnt[];
我们应该找到输出结点x的根结点xx,然后用cnt[xx] - dis[x] - 1;减1的原因是要减去自己结点本身。画图列举一下就可以知道了。

算一个并查集的变形~

代码部分:

#include <iostream>
#include <cstdio>
using namespace std;
const int N = 3e4 + 10;

int fa[N];
int cnt[N];
int dis[N];
int a, b;
char ch;

void init()
{
	for (int i = 1; i <= N; i++)
	{
		fa[i] = i;
		cnt[i] = 1;
	}
}

int find(int x)
{
	if (fa[x] != x)
	{
		int t = fa[x];
		fa[x] = find(fa[x]);
		dis[x] += dis[t];
		return fa[x];
	}
	return fa[x];
}

void mix(int x, int y)
{
	int xx = find(x);
	int yy = find(y);
	if (xx != yy)
	{
		fa[yy] = xx;
		dis[yy] = cnt[xx];
		cnt[xx] += cnt[yy];
	}
}

int main()
{
	int t;
	cin >> t;
	init();
	while (t--)
	{
		cin >> ch;
		if (ch == 'M')
		{
			cin >> a >> b;
			mix(a, b);
		}
		else 
		{
			cin >> a;
			cout << cnt[find(a)] - dis[a] - 1 << endl;
		}
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

娃娃酱斯密酱

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值