POJ-1988-Cube Stacking
这道题是并查集啦~
题目大意:初始化的时候单独的列上只有一个方块。
给出两个操作:
1.移动操作。(a, b)将a上的一整列移动在b的上面
2.询问操作。a 计算a下面有多少方块
t次询问
平常思路路径压缩的时候我们直接把当前结点的父结点fa[]赋值为根结点了。
这道题。我们在两个结点结合的时候比如M x, y。x的那一列移动到y的上面。
我们需要把y的根结点yy的父结点改为x的最底端的结点。
这样操作的话。。压缩起来很不方便。。如果不压缩就会tle。。
我们用cnt[]数组标记以当前结点为根时树下有多少结点。
dis[]记录当前结点到根结点的距离。
fa[]就是很普通的并查集的操作。
初始化:dis[]全部为0.毫无疑问
cnt[]初始化为1.当前子树只包含当前的一个节点。
fa[]初始化为自己就不用我说了哈~
我们在find()查找更新dis[]:dis[当前结点] += dis[当前结点的原父结点];
我们要把当前结点的原父结点先记录下来。
在mix()函数合并时dis[],cnt[]全部都要更新:
x的父结点xx,y的父结点yy
cnt[xx] += cnt[yy];当前树的结点个数的更新
dis[yy] = cnt[xx];当前yy到根结点距离的更新;
注意我们这里只更新了原先的两个根结点。其余结点并没有更新。
所以输出的时候不能直接输出cnt[];
我们应该找到输出结点x的根结点xx,然后用cnt[xx] - dis[x] - 1;减1的原因是要减去自己结点本身。画图列举一下就可以知道了。
算一个并查集的变形~
代码部分:
#include <iostream>
#include <cstdio>
using namespace std;
const int N = 3e4 + 10;
int fa[N];
int cnt[N];
int dis[N];
int a, b;
char ch;
void init()
{
for (int i = 1; i <= N; i++)
{
fa[i] = i;
cnt[i] = 1;
}
}
int find(int x)
{
if (fa[x] != x)
{
int t = fa[x];
fa[x] = find(fa[x]);
dis[x] += dis[t];
return fa[x];
}
return fa[x];
}
void mix(int x, int y)
{
int xx = find(x);
int yy = find(y);
if (xx != yy)
{
fa[yy] = xx;
dis[yy] = cnt[xx];
cnt[xx] += cnt[yy];
}
}
int main()
{
int t;
cin >> t;
init();
while (t--)
{
cin >> ch;
if (ch == 'M')
{
cin >> a >> b;
mix(a, b);
}
else
{
cin >> a;
cout << cnt[find(a)] - dis[a] - 1 << endl;
}
}
return 0;
}