【无标题】

单层的神经网络

import torch
import numpy as np


X = torch.tensor([[1,0,0],[1,1,0],[1,0,1],[1,1,1]],dtype = torch.float32)

andgate = torch.tensor([[0],[0],[0],[1]],dtype = torch.float32)

w = torch.tensor([-0.2,0.15,0.15],dtype = torch.float32)
def LogisticR(X,w):
    
    zhat = torch.mv(X,w)
    sigma = 1/(1+torch.exp(-zhat))
    #sigma = torch.sigmoid(zhat) #等效于上一行代码
    andhat = torch.tensor([int(x) for x in sigma >=0.5],dtype = torch.float32)
    return sigma,andhat

sigma,andhat = LogisticR(X,w)
  
print(sigma)
print(andhat)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值