单层的神经网络
import torch
import numpy as np
X = torch.tensor([[1,0,0],[1,1,0],[1,0,1],[1,1,1]],dtype = torch.float32)
andgate = torch.tensor([[0],[0],[0],[1]],dtype = torch.float32)
w = torch.tensor([-0.2,0.15,0.15],dtype = torch.float32)
def LogisticR(X,w):
zhat = torch.mv(X,w)
sigma = 1/(1+torch.exp(-zhat))
#sigma = torch.sigmoid(zhat) #等效于上一行代码
andhat = torch.tensor([int(x) for x in sigma >=0.5],dtype = torch.float32)
return sigma,andhat
sigma,andhat = LogisticR(X,w)
print(sigma)
print(andhat)