学习笔记:机器学习之支持向量机(六、非线性支持向量机与核函数引入)

活动地址:CSDN21天学习挑战赛

​1 非线性支持向量机

  学习是一个循序渐进的过程,问题往往会变得复杂多样:线性支持向量机得到的是一个线性分离超平面,当遇到的分类问题无法用线性支持向量机去解决的话怎么办?比如下图把不同类别样本区分开的是一个椭圆,应该如何处理此类问题呢?在这里插入图片描述
  如果能把非线性空间中的点映射到线性空间中的话,即把非线性问题转化为线性问题,就可以用老办法解决新问题了,关键是如何转化呢?

2 核函数引入

  假设输入空间为欧氏空间 R 2 R^2 R2,映射函数 为 φ ( x ) \varphi(x) φ(x),输出特征空间为希尔伯特空间 H H H
  已知线性支持向量机的目标函数为: min ⁡ α 1 2 ∑ i = 1 N ∑ j = 1 N α i α j y i y j ( x i ⋅ x j ) − ∑ i = 1 N α i \quad\min\limits_{\alpha} \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j}\left(x_{i} \cdot x_{j}\right)-\sum_{i=1}^{N} \alpha_{i} αmin21i=1Nj=1Nαiαjyiyj(xixj)i=1Nαi该式子中的 x i ⋅ x j x_{i}\cdot x_{j} xixj无论是原始问题还是对偶问题。目标函数都涉及输入实例与输出实例之间的内积运算,通过映射函数映射之后便为 φ ( x i ) ⋅ φ ( x j ) \varphi(x_i)\cdot\varphi(x_j) φ(xi)φ(xj)
  令 K ( x i , x j ) = φ ( x i ) ⋅ φ ( x j ) K(x_i,x_j)=\varphi(x_i)\cdot\varphi(x_j) K(xi,xj)=φ(xi)φ(xj), K ( x i , x j ) K(x_i,x_j) K(xi,xj)叫做核函数,这是在新的空间上的内积。采用不同的映射函数进行映射也可以得到相同的核函数。接下来就是求核函数,就可以将线性支持向量机的目标函数重新代换。

参考

1.《统计学习方法》——李航

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值