创建了一个微信交流群,想加入的朋友+WeChat:SODAS_MUSIC_STUDIO
支持向量机其实就是一个从几何角度建模的模型,对于线性可分数据集,支持向量机就是找距离正负样本都最远的超平面,相比于感知机,其解是唯一的,且不偏不倚,泛化性能更好!
序:回顾线性分类器
在样本空间中寻找一个超平面将不同的类别分开。

但是对于上图,其实可以用很多种分类方法,这么多种分类方法哪一个最好?
从直觉上来看,"正中间
创建了一个微信交流群,想加入的朋友+WeChat:SODAS_MUSIC_STUDIO
支持向量机其实就是一个从几何角度建模的模型,对于线性可分数据集,支持向量机就是找距离正负样本都最远的超平面,相比于感知机,其解是唯一的,且不偏不倚,泛化性能更好!
在样本空间中寻找一个超平面将不同的类别分开。

但是对于上图,其实可以用很多种分类方法,这么多种分类方法哪一个最好?
从直觉上来看,"正中间
421
921
1125
970

被折叠的 条评论
为什么被折叠?