非负矩阵分解(NMF)方法详解
目录
引言
非负矩阵分解(Non-negative Matrix Factorization, NMF)是一种盲源分离方法,广泛应用于信号处理、图像处理、音频信号分离、文本挖掘等领域。NMF的基本思想是将一个非负矩阵分解成两个非负矩阵的乘积。这种分解方法在许多实际问题中表现出了良好的效果,尤其是在信号分离和模式识别方面。
NMF的关键优势在于其“非负性”约束,即所有的矩阵元素都必须大于或等于零。这一约束使得NMF能够提取出具有物理意义的成分,例如,在音频信号分离中,NMF能够从混合的音频信号中提取出每个单独的音源。
非负矩阵分解(NMF)的基本概念
非负矩阵分解的目标是将一个非负矩阵 V V V 分解成两个非负矩阵 W W W 和 H H H 的乘积:
V ≈ W H V \approx W H V≈WH
其中:
- V ∈ R m × n V \in \mathbb{R}^{m \times n} V∈Rm×n 是原始的非负矩阵,通常是我们要分解的观测数据矩阵。
- W ∈ R m × r W \in \mathbb{R}^{m \times r} W∈Rm×r 是基矩阵,表示在原始数据中提取的模式或特征。
- H ∈ R r × n H \in \mathbb{R}^{r \times n} H∈Rr×n 是系数矩阵,表示基矩阵 W W W 中每个特征的激活程度。
这里, m m m 是数据的维度, n n n 是数据的样本数, r r r 是我们要提取的基数,即特征的数量。分解的目标是使得 W W W 和 H H H 的乘积尽可能接近 V V V,并且 W W W 和 H H H 中的元素都大于或等于零。
NMF的数学模型
NMF的核心问题是从观测数据矩阵 V V V 中找到两个非负矩阵 W W W 和 H H H,使得 V ≈ W H V \approx W H V