6. NMF方法及实例

1. 非负矩阵分解(NMF)

非负矩阵分解(Non-negative Matrix Factorization ,NMF)是在矩阵中所有元素均为非负数约束条件之下的矩阵分解方法。
基本思想:给定一个非负矩阵V,NMF能够找到一个非负矩阵W和一个非负矩阵H,使得矩阵W和H的乘积近似等于矩阵V中的值。

V n × m = W n × k × H k × m V_{n\times m}=W_{n\times k}\times H_{k\times m} Vn×m=Wn×k×Hk×m

这里写图片描述

  • W W W矩阵:基础图像矩阵矩阵,相当于从原中抽取出来的特征。
  • H H H矩阵:系数矩阵。
  • N M F NMF NMF能够广泛应用于图像分析、文本挖掘和语音处理等领域。

这里写图片描述

上图摘自NMF作者的论文,左侧为 W W W矩阵,可以看出从原始图像中抽取出 来的特征,中间的是 H H H矩阵。可以发现乘积结果与原结果是很像的。

3. sklearn中非负矩阵分解

在sklearn库中,可以使用sklearn.decomposition.NMF加载NMF算 法,主要参数有:

  • n_components:用于指定分解后矩阵的单个维度k。
  • init W W W矩阵和 H H H矩阵的初始化方式,默认为nndsvdar

#NMF人脸数据特征提取
已知Olivetti人脸数据共 400个,每个数据是64*64大小。由于NMF分解得到的W矩阵相当于从原始矩阵中提取的特征,那么就可以使用NMF对400个人脸数据进行特征提取。

这里写图片描述

通过设置k的大小,设置提取的特征的数目。在本实验中设置k=6, 随后将提取的特征以图像的形式展示 出来。

这里写图片描述

# 加载matplotlib用于数据的可视化
import matplotlib.pyplot as plt
# 加载PCA算法包
from sklearn import decomposition
# 加载Olivetti人脸数据集导入函数
from sklearn.datasets import fetch_olivetti_faces
# 加载RandomState用于创建随机种子
from numpy.random import RandomState

# 设置基本参数
# 设置图像展示时的排列情况
n_row, n_col = 2, 3
# 设置提取的特征的数目
n_components = n_row * n_col
# 设置人脸数据图片的大小
image_shape = (64, 64)
# 加载人脸数据
data_set = fetch_olivetti_faces(shuffle=True, random_state=RandomState(0))
faces = data_set.data
# 设置图像的展示方式
def plot_gallery(title, images, n_col=n_col, n_row=n_row):
    # 创建图片,并指定图片大小(英寸)
    plt.figure(figsize=(2. * n_col, 2.26 * n_row))
    # 设置标题及字号大小
    plt.suptitle(title, size=16)

    for i, comp in enumerate(images):
        # 选择绘制的子图
        plt.subplot(n_row, n_col, i + 1)

        vmax = max(comp.max(), -comp.min())

        # 对数值归一化, 并以灰度图形式显示
        plt.imshow(comp.reshape(image_shape), cmap=plt.cm.gray,
                   interpolation='nearest', vmin=-vmax, vmax=vmax)

        # 去除子图的坐标轴标签
        plt.xticks(())
        plt.yticks(())

    # 对子图位置及间隔调整
    plt.subplots_adjust(0.01, 0.05, 0.99, 0.94, 0.04, 0.)


plot_gallery("First centered Olivetti faces", faces[:n_components])

# 创建特征提取的对象NMF,使用PCA作为对比
estimators = [
    ('Eigenfaces - PCA using randomized SVD',  # PCA方法
     decomposition.PCA(n_components=6, whiten=True)),  # PCA实例

    ('Non-negative components - NMF',  # NMF方法
     decomposition.NMF(n_components=6, init='nndsvda', tol=5e-3))  # NMF实例
]

# 降维后数据点的可视化
for name, estimator in estimators:
    print("Extracting the top %d %s..." % (n_components, name))
    print(faces.shape)
    estimator.fit(faces)
    components_ = estimator.components_
    plot_gallery(name, components_[:n_components])

plt.show()
  • 0
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值