文章目录 1. 非负矩阵分解(NMF) 3. sklearn中非负矩阵分解 1. 非负矩阵分解(NMF) 非负矩阵分解(Non-negative Matrix Factorization ,NMF)是在矩阵中所有元素均为非负数约束条件之下的矩阵分解方法。 基本思想:给定一个非负矩阵V,NMF能够找到一个非负矩阵W和一个非负矩阵H,使得矩阵W和H的乘积近似等于矩阵V中的值。 V n × m = W n × k × H k × m V_{n\times m}=W_{n\times k}\times H_{k\times m} Vn×m=Wn×k×H