谱聚类(Spectral Clustering)方法详解
目录
引言
谱聚类(Spectral Clustering)是一种基于图论的无监督学习算法,它通过对数据的相似度矩阵进行特征分解(谱分解),以此来揭示数据的潜在结构,进而完成数据的聚类任务。谱聚类算法在处理非线性可分数据、非凸形状的聚类问题时,具有很好的效果,广泛应用于图像分割、数据降维、推荐系统等领域。
谱聚类的基本概念
谱聚类的核心思想是通过构造一个图,并基于图的谱(即特征值和特征向量)来进行数据的聚类。它的主要步骤包括:
- 构建相似度矩阵:表示数据点之间的相似性。
- 计算拉普拉斯矩阵:图的拉普拉斯矩阵可以捕捉图的结构特征。
- 进行特征值分解:对拉普拉斯矩阵进行特征值分解,获取特征向量。
- 聚类:通过选择前几个特征向量构成的新空间进行聚类,常用的方法是K-means。
谱聚类的数学原理
谱聚类的数学基础源于图论。我们可以把数据集看作一个图,其中数据点是图的节点,数据点之间的相似性(例如欧氏距离或高斯核函数)决定了图中边的权重。谱聚类的关键步骤是计算图的拉普拉斯矩阵,然后对该矩阵进行特征值分解。具体步骤如下:
1. 构建相似度矩阵
假设有 n n n 个数据点,将这些数据点看作图的节点。我们通过一个相似度函数来度量任意两点之间的相似性。常见的相似度函数是高斯核函数,定义为:
s ( x i , x j ) = exp ( − ∥ x i − x j ∥ 2 2 σ 2 ) s(x_i, x_j) = \exp \left( - \frac{\| x_i - x_j \|^2}{2\sigma^2} \right) s(xi,xj)=exp(−2σ2∥x