无监督算法——谱聚类(Spectral Clustering)

谱聚类(Spectral Clustering)方法详解

目录

  1. 引言
  2. 谱聚类的基本概念
  3. 谱聚类的数学原理
  4. 谱聚类的步骤
  5. 谱聚类的应用
  6. 代码实现与简要解读

引言

谱聚类(Spectral Clustering)是一种基于图论的无监督学习算法,它通过对数据的相似度矩阵进行特征分解(谱分解),以此来揭示数据的潜在结构,进而完成数据的聚类任务。谱聚类算法在处理非线性可分数据、非凸形状的聚类问题时,具有很好的效果,广泛应用于图像分割、数据降维、推荐系统等领域。

谱聚类的基本概念

谱聚类的核心思想是通过构造一个图,并基于图的谱(即特征值和特征向量)来进行数据的聚类。它的主要步骤包括:

  1. 构建相似度矩阵:表示数据点之间的相似性。
  2. 计算拉普拉斯矩阵:图的拉普拉斯矩阵可以捕捉图的结构特征。
  3. 进行特征值分解:对拉普拉斯矩阵进行特征值分解,获取特征向量。
  4. 聚类:通过选择前几个特征向量构成的新空间进行聚类,常用的方法是K-means。

谱聚类的数学原理

谱聚类的数学基础源于图论。我们可以把数据集看作一个图,其中数据点是图的节点,数据点之间的相似性(例如欧氏距离或高斯核函数)决定了图中边的权重。谱聚类的关键步骤是计算图的拉普拉斯矩阵,然后对该矩阵进行特征值分解。具体步骤如下:

1. 构建相似度矩阵

假设有 n n n 个数据点,将这些数据点看作图的节点。我们通过一个相似度函数来度量任意两点之间的相似性。常见的相似度函数是高斯核函数,定义为:

s ( x i , x j ) = exp ⁡ ( − ∥ x i − x j ∥ 2 2 σ 2 ) s(x_i, x_j) = \exp \left( - \frac{\| x_i - x_j \|^2}{2\sigma^2} \right) s(xi,xj)=exp(2σ2x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DuHz

喜欢就支持一下 ~ 谢谢啦!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值