传统的图像超分辨率(Super-Resolution, SR)算法解读

目录

  1. 引言
  2. 插值算法的基本概念
  3. 常见插值方法
    1. 邻近插值(Nearest Neighbor Interpolation)
    2. 双线性插值(Bilinear Interpolation)
    3. 双三次插值(Bicubic Interpolation)
    4. Lanczos 插值(Lanczos Interpolation)
  4. 插值在超分辨率中的应用
  5. 代码示例
  6. 代码简要解读

引言

在传统的图像超分辨率(Super-Resolution, SR)任务中,我们常常需要将低分辨率图像转化为更高分辨率的图像,以满足后续图像处理或视觉需求。插值(Interpolation)方法是最简单且应用最为广泛的传统超分辨率方法之一。它通过对缺失或未知像素值进行估计,从而“填补”图像中新的采样点,以达到扩大图像分辨率的目的。

然而,这类方法在放大倍数较大时通常会带来模糊或伪影(artifact),并不能有效提升图像的细节质量。即便如此,插值方法作为超分辨率最基本的工具,在许多需要快速处理、大规模数据处理或者对图像质量要求不高的场合仍能发挥重要作用。


插值算法的基本概念

插值(Interpolation)的核心思想是:通过已有采样点的值(像素值),来预测未知采样点的值。如果我们将图像视为一个二维信号 I ( x , y ) I(x, y) I(x,y),其像素在整数网格上可表示为:

I ( i , j ) , i = 0 , 1 , 2 , … , M − 1 ;    j = 0 , 1 , 2 , … , N − 1 I(i, j), \quad i = 0, 1, 2, \ldots, M-1; \; j = 0, 1, 2, \ldots, N-1 I(i,j),i=0,1,2,,M1;j=0,1,2,,N1

当我们想要“放大”图像时,需要在更密集的坐标网格上估计像素值。设放大后的图像大小为 M ′ × N ′ M' \times N' M×N,通常会有一个水平缩放因子 S x = M ′ M S_x = \frac{M'}{M} Sx=MM 和一个垂直缩放因子 S y = N ′ N S_y = \frac{N'}{N} Sy=NN。对于新的坐标点 ( x ′ , y ′ ) (x', y') (x,y),插值算法会根据周围已知像素点的值,使用某种公式来计算 I ′ ( x ′ , y ′ ) I'(x', y') I(x,y)

从数学角度说,插值可视为以连续函数去近似离散采样点的过程,然后在更密集的采样位置对该连续函数做采样,从而得到新的像素值。


常见插值方法

下面介绍几种最常见的插值方法,它们的复杂度和效果各不相同。

邻近插值(Nearest Neighbor Interpolation)

  • 特点:实现最简单,计算最少。
  • 思路:直接将新的采样点的像素值,赋值为与其坐标距离最近的已知像素点的值。
  • 数学表示:设放大的采样点坐标为 ( x ′ , y ′ ) (x', y') (x,y),而原始图像坐标为 ( x , y ) (x, y) (x,y)。邻近插值可简单表示为:
    x = round ( x ′ S x ) , y = round ( y ′ S y ) , x = \text{round}\left(\frac{x'}{S_x}\right), \quad y = \text{round}\left(\frac{y'}{S_y}\right), x=round(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DuHz

喜欢就支持一下 ~ 谢谢啦!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值