边际谱(Marginal Spectrum)详解
目录
1. 背景介绍
当我们在分析非平稳或非线性信号的频率特征时,仅使用传统的傅里叶变换往往难以捕捉随时间变化的频率信息。为此,人们提出了多种时频分析方法:如短时傅里叶变换(STFT)、小波变换以及希尔伯特-黄变换(Hilbert-Huang Transform, HHT)等。
- HHT的基本思路:
- 先用本征模态分解(EMD)将原始信号分解为若干本征模态函数(IMF)。
- 然后对每个IMF做希尔伯特变换,获取瞬时幅值、瞬时相位与瞬时频率,并汇总到希尔伯特谱(Hilbert Spectrum)中。
希尔伯特谱本质上是一个三维描述:时间 × \times × 频率 × \times × 幅值(或能量)。然而,在有些研究或实际应用中,我们需要一个类似于“整体频率分布”的结果,但又希望继承非平稳分析的优点,于是就引入了**边际谱(Marginal Spectrum)**的概念。
2. 希尔伯特谱与时频分布
2.1 希尔伯特谱
若信号 x ( t ) x(t) x(t) 经EMD分解得到若干IMF(记为 c k ( t ) c_k(t) ck(t) ),并对每个IMF进行希尔伯特变换,得到瞬时幅值 A k ( t ) A_k(t) Ak(t) 和瞬时角频率 ω k ( t ) \omega_k(t) ωk(t)。则可以定义希尔伯特谱:
H ( ω , t ) = ∑ k = 1 n A k ( t ) δ ( ω − ω k ( t ) ) , H(\omega, t) \;=\; \sum_{k=1}^{n} A_k(t)\,\delta\!\bigl(\omega - \omega_k(t)\bigr), H(ω,t)=k=1∑nAk(t)δ(ω−ωk(t)),
其中 δ ( ⋅ ) \delta(\cdot) δ(⋅) 是狄拉克 δ \delta δ-函数,刻画了在时刻 t t t 出现了频率 ω k ( t ) \omega_k(t) ωk(t),并以 A k ( t ) A_k(t) Ak(t) 作为幅值(或能量)权重。
从直观上说,希尔伯特谱是信号在时频平面上的“能量密度”描述,能够反映每一时刻在哪些频率附近有主要能量贡献。
2.2 三维到二维的“边缘化”
希尔伯特谱是个二维函数 H ( ω , t ) H(\omega, t) H(ω,t),在可视化时常用“时间-频率”坐标+“颜色/亮度”表示幅值。但有时我们只想要对“频率”在整段时间里总体贡献的一个量,或者说希望在频率轴上能画出一条类似传统谱的曲线。于是,引入了对时间轴积分的概念,得到边际谱。
3. 边际谱的定义与数学推导
3.1 定义
**边际谱(Marginal Spectrum)**通常记为 h ( ω ) h(\omega) h(ω),它是对希尔伯特谱 H ( ω , t ) H(\omega, t) H(ω,t) 在时间轴上做积分而得到的函数:
h ( ω ) = ∫ t 0 t 1 H ( ω , t ) d t . h(\omega) = \int_{t_0}^{t_1} H(\omega, t)\,\mathrm{d}t. h(ω)=∫t0t1H(ω,t)dt.
在HHT的背景下,若希尔伯特谱写成
H ( ω , t ) = ∑ k = 1 n A k ( t ) δ ( ω − ω k ( t ) ) , H(\omega, t) = \sum_{k=1}^{n} A_k(t)\,\delta\!\bigl(\omega - \omega_k(t)\bigr), H(ω,t)=k=1∑nAk(t)δ(ω−ωk(t)),
则边际谱可以展开为:
h ( ω ) = ∫ t 0 t 1 ∑ k = 1 n A k ( t ) δ ( ω − ω k ( t ) ) d t = ∑ k = 1 n ∫ t 0 t 1 A k ( t ) δ ( ω − ω k ( t ) ) d t