Schur 分解详解

Schur 分解详解

Schur分解是线性代数中的一种非常重要的矩阵分解方法,它将一个方阵分解为一个上三角矩阵和一个单位ary矩阵的乘积。Schur分解对于理解和计算矩阵的特征值、求解矩阵函数以及其他数值线性代数问题具有广泛的应用。它在数值计算中尤为重要,因为它提供了一种可靠的方式来简化矩阵的结构,尤其是在求解特征值时。

Schur 分解的定义

A A A 是一个 n × n n \times n n×n 的复矩阵(如果 A A A 是实矩阵,也可以进行Schur分解),Schur定理告诉我们,任何一个方阵 A A A 都可以分解为以下形式:

A = Q T Q H A = Q T Q^H A=QTQH

其中, Q Q Q 是一个单位ary矩阵(即 Q H Q = Q Q H = I Q^H Q = Q Q^H = I QHQ=QQH=I,其中 Q H Q^H QH Q Q Q 的共轭转置),而 T T T 是一个上三角矩阵。

上三角矩阵

上三角矩阵的定义是:一个方阵 T = [ t i j ] T = [t_{ij}] T=[tij] 被称为上三角矩阵,如果对于所有 i > j i > j i>j,矩阵中的元素 t i j = 0 t_{ij} = 0 tij=0。换句话说,所有在主对角线下方的元素都为零。例如,一个 4 × 4 4 \times 4 4×4 的上三角矩阵可以表示为:

T = ( t 11 t 12 t 13 t 14 0 t 22 t 23 t 24 0 0 t 33 t 34 0 0 0 t 44 ) T = \begin{pmatrix} t_{11} & t_{12} & t_{13} & t_{14} \\ 0 & t_{22} & t_{23} & t_{24} \\ 0 & 0 & t_{33} & t_{34} \\ 0 & 0 & 0 & t_{44} \end{pmatrix} T= t11000t12t2200t13t23t330t14t24t34t44

单位ary矩阵

单位ary矩阵 Q Q Q 是一个复矩阵,满足 Q H Q = Q Q H = I Q^H Q = Q Q^H = I QHQ=QQH=I,其中 I I I 是单位矩阵。单位ary矩阵的列是单位向量,并且列与列之间是正交的。Schur分解中的矩阵 Q Q Q 保持了矩阵的正交性(或单位ary性),这意味着它没有改变矩阵的“长度”和“角度”属性。

Schur 分解的步骤

Schur分解的过程通常通过数值算法进行。在实际计算中,我们通过一系列数值方法将矩阵 A A A 转化为上三角矩阵 T T T,同时构造一个单位ary矩阵 Q Q Q,使得 A = Q T Q H A = Q T Q^H A=QTQH。一种常用的算法是QR算法,其步骤大致如下:

  1. 初始矩阵:给定一个矩阵 A A A,我们希望找到它的Schur分解,即 A = Q T Q H A = Q T Q^H A=QTQH
  2. QR算法:通过反复应用QR分解来逐步逼近矩阵的Schur形式。QR分解将矩阵 A A A 分解为一个正交矩阵 Q 1 Q_1 Q1 和一个上三角矩阵 R 1 R_1 R1,然后通过更新矩阵的方法得到新的矩阵,直到它收敛于一个上三角矩阵。
  3. 迭代过程:在每一步迭代中,我们通过计算QR分解来逐步消除矩阵的非上三角部分。随着迭代的进行,矩阵逐渐接近上三角矩阵 T T T,而单位ary矩阵 Q Q Q 由这些步骤积累得到。

最终,通过足够多的迭代,矩阵 A A A 将转化为上三角矩阵 T T T,并且得到了一个单位ary矩阵 Q Q Q,满足 A = Q T Q H A = Q T Q^H A=QTQH

Schur 分解的数学性质

Schur分解有许多重要的数学性质,其中最重要的一个就是它能揭示矩阵的特征值。由于矩阵 T T T 是一个上三角矩阵,因此它的对角线上的元素就是矩阵 A A A 的特征值。这意味着,通过Schur分解,我们可以轻松地从矩阵 A A A 中提取出它的特征值。

  • 特征值:矩阵 T T T 的对角线元素是矩阵 A A A 的特征值。即,如果 T = ( t 11 ⋯ t 1 n 0 ⋱ ⋮ 0 0 t n n ) T = \begin{pmatrix} t_{11} & \cdots & t_{1n} \\ 0 & \ddots & \vdots \\ 0 & 0 & t_{nn} \end{pmatrix} T= t11000t1ntnn ,则矩阵 A A A 的特征值是 t 11 , t 22 , … , t n n t_{11}, t_{22}, \dots, t_{nn} t11,t22,,tnn

  • 正交性:单位ary矩阵 Q Q Q 保证了分解的稳定性和数值的精度。正交性意味着,矩阵 A A A T T T 之间的关系不会影响到矩阵的特征值,并且 Q Q Q 不会改变矩阵的特征向量。

  • 相似性:Schur分解展示了矩阵相似性的一种重要形式。即,矩阵 A A A 和上三角矩阵 T T T 是相似的矩阵,意味着它们拥有相同的特征值。具体而言,矩阵 A A A T T T 是相似矩阵,满足:

A = Q T Q H A = Q T Q^H A=QTQH

其中 Q Q Q 是单位ary矩阵。

Schur 分解的数学推导

假设矩阵 A A A 是一个 n × n n \times n n×n 的方阵,Schur分解定理告诉我们,可以找到一个单位ary矩阵 Q Q Q 和一个上三角矩阵 T T T,使得:

A = Q T Q H A = Q T Q^H A=QTQH

通过QR分解实现Schur分解

Schur分解通常通过QR算法来实现。QR算法首先对矩阵 A A A 进行QR分解,得到:

A = Q 1 R 1 A = Q_1 R_1 A=Q1R1

接着我们将 R 1 Q 1 R_1 Q_1 R1Q1 作为新的矩阵,重复进行QR分解,直到矩阵收敛为一个上三角矩阵 T T T,并且通过这些步骤逐渐得到单位ary矩阵 Q Q Q

具体过程如下:

  1. 初始矩阵:我们从矩阵 A A A 开始。
  2. 第一个QR分解:对矩阵 A A A 进行QR分解,得到 A = Q 1 R 1 A = Q_1 R_1 A=Q1R1,然后更新矩阵为 A 1 = R 1 Q 1 A_1 = R_1 Q_1 A1=R1Q1
  3. 重复QR分解:对 A 1 A_1 A1 进行QR分解,得到新的 Q 2 Q_2 Q2 R 2 R_2 R2,继续更新矩阵为 A 2 = R 2 Q 2 A_2 = R_2 Q_2 A2=R2Q2
  4. 继续迭代:不断进行此过程,直到矩阵收敛于一个上三角矩阵 T T T

最终,我们得到 A = Q T Q H A = Q T Q^H A=QTQH,其中 T T T 是上三角矩阵, Q Q Q 是单位ary矩阵。

特征值的提取

由于矩阵 T T T 是上三角矩阵,所有的特征值都位于它的主对角线。因此,矩阵 A A A 的特征值就是矩阵 T T T 的对角线元素,即:

λ 1 = t 11 , λ 2 = t 22 , … , λ n = t n n \lambda_1 = t_{11}, \lambda_2 = t_{22}, \dots, \lambda_n = t_{nn} λ1=t11,λ2=t22,,λn=tnn

这说明Schur分解不仅揭示了矩阵的特征值,还提供了一个数值稳定的方式来求解它们。

Schur 分解的应用

1. 求解特征值

Schur分解常用于求解矩阵的特征值。由于上三角矩阵的对角线元素即为特征值,Schur分解提供了一种非常直接的方式来计算矩阵的特征值。对于一个给定的矩阵 A A A,通过Schur分解,我们可以得到一个上三角矩阵 T T T,其中的对角线元素就是矩阵 A A A 的特征值。

2. 数值稳定性

Schur分解在数值计算中有很高的稳定性,尤其是在处理大型矩阵时。由于它通过正交变换保持了矩阵的结构,Schur分解可以有效避免数值误差的积累,特别是在进行特征值计算时。

3. 求解矩阵函数

Schur分解还广泛应用于矩阵函数的计算。比如,计算矩阵的指数、对数或者其他类型的矩阵函数时,Schur分解提供了一种简化矩阵计算的方式。通过将矩阵 A A A 分解为 A = Q T Q H A = Q T Q^H A=QTQH,我们可以先对上三角矩阵 T T T 进行相应的矩阵函数操作,再通过 Q Q Q Q H Q^H QH 来恢复结果。

4. 系统理论中的应用

在控制理论和信号处理等领域,Schur分解被广泛应用于系统的分析和设计。通过Schur分解,我们可以简化和分析系统的动态行为,特别是在处理多输入多输出(MIMO)系统时,Schur分解提供了一个简洁而有效的工具。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DuHz

喜欢就支持一下 ~ 谢谢啦!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值