矩阵的分解:满秩分解和奇异值分解

本文深入探讨了矩阵的两种重要分解方法——满秩分解和奇异值分解。满秩分解包括定义、计算方法和Hermite标准型的介绍。奇异值分解(SVD)则涉及奇异值、分解过程和计算实例。这两种分解在机器学习、模式识别等领域有广泛应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文主要介绍矩阵的两种经典的分解算法:满秩分解和奇异值分解。这两块内容非常基础,同时却又非常重要,在机器学习,模式识别,人工智能等领域有着非常广泛的应用。

满秩分解

定义与性质

定义1 满秩分解:对于 m×n m × n 的矩阵 A A ,假设其秩为 r ,若存在秩同样为 r r 两个矩阵: F m × r (列满秩)和 Gr×n G r × n (行满秩),使得 A=FG A = F G ,则称其为矩阵 A A 的满秩分解。

定理1:满秩分解有两个性质,

  • 满秩分解不唯一:假设存在 r 阶可逆方阵 D D ,则 A = F G = F ( D D 1 ) G = ( F D ) ( D 1 G ) = F G

    • 任何非零矩阵一定存在满秩分解。证明如下;
    • 假设存在初等变换矩阵 Bm×m B m × m ,使得

      BA=(GO)(1) (1) B A = ( G O )

      其中 G G 是个 m × r 的行满秩矩阵。由上面的公式,可以推出,

      A=B1(GO)=(F|S)(GO)=FG(2) (2) A = B − 1 ( G O ) = ( F | S ) ( G O ) = F G

      公式第二行中,我们将 B1 B − 1 分块为 (F|S) ( F | S ) ,其中 F F m × r 矩阵(秩为 r r ), G r×n r × n 矩阵(秩为 r r )。

      满秩分解的计算

      如果能理解上面的证明过程,那么计算满秩分解就很容易了,因为方法与证明思路是一致的。

      举个例子来说明,现在要计算下面矩阵 A 的满秩分解:

      A=112022112211(3) (3) A = ( − 1 0 1 2 1 2 − 1 1 2 2 − 2 − 1 )

      首先,对 A A 进行初等变换,得到行满秩矩阵 G 和初等矩阵 B B .

      (4) A = ( 1 0 1 2 1 0 0 1 2 1 1 0 1 0 2 2 2 1 0 0 1 ) ( 1 0 1 2 1 0 0 0 2 0 3 1 1 0 0 0 0 0 1 1 1 )

      可见,

      B=111011001,G=(10021023)(5) (5) B = ( 1 0 0 1 1 0 1 − 1 1 ) , G = ( − 1 0 1 2 0 2 0 3 )

      接着,可以算出

      B1=112011001=(F|S)(6) (6) B − 1 = ( 1 0 0 − 1 1 0 − 2 1 1 ) = ( F | S )

      因为 r=2 r = 2 ,所以可以得到

      F=112011(7) (7) F = ( 1 0 − 1 1 − 2 1 )

      因此

      A=FG=112011(10021023)(8) (8) A = F G = ( 1 0 − 1 1 − 2 1 ) ⋅ ( − 1 0 1 2 0 2 0 3 )

      另一种计算满秩分解的方法是用矩阵 A A 的Hermite标准型。具体做法如下。

      Hermite标准型

      先给出Hermite标准型的定义。

      定义2 Hermite标准型:对于 m × n 的矩阵 H H ,假设其秩为 r ,若 H H 满足以下3个条件,则称之为Hermite标准型。

      • H 的前 r r 行中,每行都至少含一个非零元素,且每行的第一个非零元是1,而后 m r 行都是零元;

      • 假设第 i i 行的第一个非零元(就是1)在第 j i 列,则 j1<j2<<jr j 1 < j 2 < ⋯ < j r
      • H H j 1 , j 2 , , j r 列是单位矩阵 Em E m 的前 r r 行(这个条件实际上覆盖了前2个条件);

      由定义可以看出Hermite标准型就是将秩为 r m×n m × n 矩阵经初等变换而成的阶梯型矩阵。所以也叫做Hermite最简型。

      算出Hermite标准型后,对于矩阵的满秩分解 A=FG A = F G 来说,矩阵 F F 就是矩阵

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值