Wigner-Ville分布:时频分析的有力工具

Wigner-Ville分布:时频分析的有力工具

时频分析是信号处理领域的重要方法,它允许我们同时观察信号在时间和频率域的特性。在众多时频分析工具中,Wigner-Ville分布(WVD)因其独特的数学特性和优越的时频分辨能力而备受关注。

Wigner-Ville分布的基本概念

传统的信号分析方法如傅里叶变换只能提供信号的频域信息,而时域信息则完全丢失;同样,时域分析无法反映信号的频率特性。然而,许多实际信号(如语音、雷达回波、生物医学信号等)的频率特性随时间变化,这类信号被称为非平稳信号。对于非平稳信号,我们需要同时了解信号在时间和频率上的分布特性,这就是时频分析的核心目标。Wigner-Ville分布是由Eugene Wigner在1932年首次提出,后由Jean-André Ville在1948年进一步发展而来的一种二次时频分布。它能够提供信号能量在时频平面上的分布情况,特别适合分析频率随时间变化的信号。

Wigner-Ville分布的数学定义

对于一个连续时间信号 x ( t ) x(t) x(t),其Wigner-Ville分布定义为:

W x ( t , f ) = ∫ − ∞ ∞ x ( t + τ 2 ) x ∗ ( t − τ 2 ) e − j 2 π f τ d τ W_x(t,f) = \int_{-\infty}^{\infty} x(t+\frac{\tau}{2})x^*(t-\frac{\tau}{2})e^{-j2\pi f\tau}d\tau Wx(t,f)=x(t+2τ)x(t2τ)ej2πfτdτ

其中, x ∗ ( t ) x^*(t) x(t)表示 x ( t ) x(t) x(t)的复共轭, t t t是时间变量, f f f是频率变量, τ \tau τ是积分变量。

对于离散时间信号 x [ n ] x[n] x[n],其离散Wigner-Ville分布可表示为:

W x [ n , k ] = ∑ m = − ∞ ∞ x [ n + m ] x ∗ [ n − m ] e − j 4 π m k / N W_x[n,k] = \sum_{m=-\infty}^{\infty} x[n+m]x^*[n-m]e^{-j4\pi mk/N} Wx[n,k]=m=x[n+m]x[nm]ej4πmk/N

其中, n n n是离散时间索引, k k k是离散频率索引, N N N是FFT的长度。

从更深层次的数学角度来看,Wigner-Ville分布可以被视为信号的自相关函数的傅里叶变换。定义瞬时自相关函数为:

R x ( t , τ ) = x ( t + τ 2 ) x ∗ ( t − τ 2 ) R_x(t,\tau) = x(t+\frac{\tau}{2})x^*(t-\frac{\tau}{2}) Rx(t,τ)=x(t+2τ)x(t2τ)

则Wigner-Ville分布可以表示为:

W x ( t , f ) = ∫ − ∞ ∞ R x ( t , τ ) e − j 2 π f τ d τ = F τ → f { R x ( t , τ ) } W_x(t,f) = \int_{-\infty}^{\infty} R_x(t,\tau)e^{-j2\pi f\tau}d\tau = \mathcal{F}_{\tau \to f}\{R_x(t,\tau)\} Wx(t,f)=Rx(t,τ)ej2πfτdτ=Fτf{Rx(t,τ)}

这种表示方法揭示了Wigner-Ville分布与信号自相关性的内在联系,有助于我们从另一个角度理解其物理意义。

Wigner-Ville分布的物理意义

Wigner-Ville分布可以被理解为信号能量在时频平面上的分布。对于任意时刻 t t t和频率 f f f W x ( t , f ) W_x(t,f) Wx(t,f)表示信号在该时频点附近的能量密度。通过积分,我们可以得到:

∫ − ∞ ∞ W x ( t , f ) d f = ∣ x ( t ) ∣ 2 \int_{-\infty}^{\infty} W_x(t,f)df = |x(t)|^2 Wx(t,f)df=x(t)2

∫ − ∞ ∞ W x ( t , f ) d t = ∣ X ( f ) ∣ 2 \int_{-\infty}^{\infty} W_x(t,f)dt = |X(f)|^2 Wx(t,f)dt=X(f)2

这表明Wigner-Ville分布的边缘分布分别对应信号的瞬时功率和功率谱密度,这是Wigner-Ville分布的重要性质之一。

Wigner-Ville分布的计算实现

实际计算中,我们通常需要对信号进行窗口处理,以减少计算复杂度并控制交叉项的影响。这就引出了伪Wigner-Ville分布(PWVD):

P W V x ( t , f ) = ∫ − ∞ ∞ h ( τ ) x ( t + τ 2 ) x ∗ ( t − τ 2 ) e − j 2 π f τ d τ PWV_x(t,f) = \int_{-\infty}^{\infty} h(\tau)x(t+\frac{\tau}{2})x^*(t-\frac{\tau}{2})e^{-j2\pi f\tau}d\tau PWVx(t,f)=h(τ)x(t+2τ)x(t2τ)ej2πfτdτ

其中 h ( τ ) h(\tau) h(τ)是窗函数,用于限制积分范围。

进一步,为了减少交叉项的影响,我们可以引入平滑Wigner-Ville分布(SWVD):

S W V x ( t , f ) = ∫ − ∞ ∞ ∫ − ∞ ∞ g ( t − u ) h ( τ ) x ( u + τ 2 ) x ∗ ( u − τ 2 ) e − j 2 π f τ d τ d u SWV_x(t,f) = \int_{-\infty}^{\infty}\int_{-\infty}^{\infty} g(t-u)h(\tau)x(u+\frac{\tau}{2})x^*(u-\frac{\tau}{2})e^{-j2\pi f\tau}d\tau du SWVx(t,f)=g(tu)h(τ)x(u+2τ)x(u2τ)ej2πfτdτdu

其中 g ( t ) g(t) g(t)是时间平滑窗口。

在实际的数值计算中,我们需要考虑采样率、窗口长度、FFT长度等参数的选择。一个高效的实现方法是利用快速傅里叶变换(FFT)算法。对于离散信号 x [ n ] x[n] x[n],我们可以首先计算瞬时自相关函数:

R x [ n , m ] = x [ n + m ] x ∗ [ n − m ] R_x[n,m] = x[n+m]x^*[n-m] Rx[n,m]=x[n+m]x[nm]

然后对每个时间点 n n n,对 R x [ n , m ] R_x[n,m] Rx[n,m]关于 m m m进行FFT,得到该时间点的频率分布。为了进一步提高计算效率,可以采用分块处理的方法,即将长信号分成若干重叠的短段,分别计算其Wigner-Ville分布,然后拼接得到完整的时频表示。这种方法不仅可以降低计算复杂度,还可以利用并行计算技术进一步提高效率。

Wigner-Ville分布的性质

Wigner-Ville分布具有许多优良的数学性质,使其在时频分析中占据重要地位:

  1. 实值性:对于实信号,Wigner-Ville分布是实值函数。

  2. 时频边缘性质:如前所述,Wigner-Ville分布的边缘分布分别对应信号的瞬时功率和功率谱密度。

  3. 时频平移不变性:信号的时间或频率移动直接反映在Wigner-Ville分布上。

  4. 能量保持性
    ∫ − ∞ ∞ ∫ − ∞ ∞ W x ( t , f ) d t d f = ∫ − ∞ ∞ ∣ x ( t ) ∣ 2 d t = ∫ − ∞ ∞ ∣ X ( f ) ∣ 2 d f \int_{-\infty}^{\infty}\int_{-\infty}^{\infty} W_x(t,f)dtdf = \int_{-\infty}^{\infty} |x(t)|^2dt = \int_{-\infty}^{\infty} |X(f)|^2df Wx(t,f)dtdf=x(t)2dt=X(f)2df

  5. Moyal关系:对于两个信号 x ( t ) x(t) x(t) y ( t ) y(t) y(t),有:
    ∫ − ∞ ∞ ∫ − ∞ ∞ W x ( t , f ) W y ( t , f ) d t d f = ∣ ∫ − ∞ ∞ x ( t ) y ∗ ( t ) d t ∣ 2 \int_{-\infty}^{\infty}\int_{-\infty}^{\infty} W_x(t,f)W_y(t,f)dtdf = |\int_{-\infty}^{\infty} x(t)y^*(t)dt|^2 Wx(t,f)Wy(t,f)dtdf=x(t)y(t)dt2

此外,Wigner-Ville分布还满足一系列更复杂的数学性质。例如,对于线性调频信号,Wigner-Ville分布能够精确地反映其瞬时频率轨迹,这是其他许多时频分析方法难以做到的。对于信号的线性变换,Wigner-Ville分布也有良好的性质。考虑线性系统 y ( t ) = ∫ − ∞ ∞ h ( t − τ ) x ( τ ) d τ y(t) = \int_{-\infty}^{\infty} h(t-\tau)x(\tau)d\tau y(t)=h(tτ)x(τ)dτ,其中 h ( t ) h(t) h(t)是系统的冲激响应,则输出信号 y ( t ) y(t) y(t)的Wigner-Ville分布与输入信号 x ( t ) x(t) x(t)的Wigner-Ville分布之间存在以下关系:

W y ( t , f ) = ∫ − ∞ ∞ ∫ − ∞ ∞ A h ( t − t ′ , f − f ′ ) W x ( t ′ , f ′ ) d t ′ d f ′ W_y(t,f) = \int_{-\infty}^{\infty}\int_{-\infty}^{\infty} A_h(t-t', f-f')W_x(t',f')dt'df' Wy(t,f)=Ah(tt,ff)Wx(t,f)dtdf

其中 A h ( t , f ) A_h(t,f) Ah(t,f) h ( t ) h(t) h(t)的模糊函数(ambiguity function),定义为:

A h ( t , f ) = ∫ − ∞ ∞ h ( τ + t 2 ) h ∗ ( τ − t 2 ) e − j 2 π f τ d τ A_h(t,f) = \int_{-\infty}^{\infty} h(\tau+\frac{t}{2})h^*(\tau-\frac{t}{2})e^{-j2\pi f\tau}d\tau Ah(t,f)=h(τ+2t)h(τ2t)ej2πfτdτ

这一性质表明,线性系统对信号的Wigner-Ville分布的影响可以通过系统冲激响应的模糊函数来描述,这为分析线性系统对信号时频特性的影响提供了理论基础。

Wigner-Ville分布的交叉项问题

尽管Wigner-Ville分布具有许多优良性质,但它也存在一个显著的缺点:交叉项(cross-terms)的存在。对于多分量信号,Wigner-Ville分布不仅包含各分量的自项(auto-terms),还包含分量之间的交叉项。这些交叉项通常表现为时频平面上的振荡干扰,可能会掩盖真实的信号特性。
考虑一个由两个分量组成的信号 x ( t ) = x 1 ( t ) + x 2 ( t ) x(t) = x_1(t) + x_2(t) x(t)=x1(t)+x2(t),其Wigner-Ville分布为:

W x ( t , f ) = W x 1 ( t , f ) + W x 2 ( t , f ) + 2 Re { W x 1 , x 2 ( t , f ) } W_x(t,f) = W_{x_1}(t,f) + W_{x_2}(t,f) + 2\text{Re}\{W_{x_1,x_2}(t,f)\} Wx(t,f)=Wx1(t,f)+Wx2(t,f)+2Re{Wx1,x2(t,f)}

其中 W x 1 , x 2 ( t , f ) W_{x_1,x_2}(t,f) Wx1,x2(t,f)是交叉Wigner-Ville分布,定义为:

W x 1 , x 2 ( t , f ) = ∫ − ∞ ∞ x 1 ( t + τ 2 ) x 2 ∗ ( t − τ 2 ) e − j 2 π f τ d τ W_{x_1,x_2}(t,f) = \int_{-\infty}^{\infty} x_1(t+\frac{\tau}{2})x_2^*(t-\frac{\tau}{2})e^{-j2\pi f\tau}d\tau Wx1,x2(t,f)=x1(t+2τ)x2(t2τ)ej2πfτdτ

这些交叉项通常在自项之间的中点位置产生振荡,干扰信号的时频表示。为了减轻交叉项的影响,研究者提出了多种改进方法,如Cohen类分布、平滑伪Wigner-Ville分布等。

更一般地,对于由 N N N个分量组成的信号 x ( t ) = ∑ i = 1 N x i ( t ) x(t) = \sum_{i=1}^{N} x_i(t) x(t)=i=1Nxi(t),其Wigner-Ville分布可以表示为:

W x ( t , f ) = ∑ i = 1 N W x i ( t , f ) + 2 ∑ i = 1 N ∑ j = i + 1 N Re { W x i , x j ( t , f ) } W_x(t,f) = \sum_{i=1}^{N} W_{x_i}(t,f) + 2\sum_{i=1}^{N}\sum_{j=i+1}^{N} \text{Re}\{W_{x_i,x_j}(t,f)\} Wx(t,f)=i=1NWxi(t,f)+2i=1Nj=i+1NRe{Wxi,xj(t,f)}

可以看出,随着信号分量数量的增加,交叉项的数量呈二次增长,这使得Wigner-Ville分布在处理复杂多分量信号时面临挑战。为了深入理解交叉项的性质,我们可以考虑两个简单的正弦信号 x 1 ( t ) = A 1 e j 2 π f 1 t x_1(t) = A_1e^{j2\pi f_1t} x1(t)=A1ej2πf1t x 2 ( t ) = A 2 e j 2 π f 2 t x_2(t) = A_2e^{j2\pi f_2t} x2(t)=A2ej2πf2t。它们的Wigner-Ville分布分别为:

W x 1 ( t , f ) = ∣ A 1 ∣ 2 δ ( f − f 1 ) W_{x_1}(t,f) = |A_1|^2\delta(f-f_1) Wx1(t,f)=A12δ(ff1)

W x 2 ( t , f ) = ∣ A 2 ∣ 2 δ ( f − f 2 ) W_{x_2}(t,f) = |A_2|^2\delta(f-f_2) Wx2(t,f)=A22δ(ff2)

而它们的交叉Wigner-Ville分布为:

W x 1 , x 2 ( t , f ) = A 1 A 2 ∗ e j 2 π ( f 1 − f 2 ) t δ ( f − f 1 + f 2 2 ) W_{x_1,x_2}(t,f) = A_1A_2^*e^{j2\pi(f_1-f_2)t}\delta(f-\frac{f_1+f_2}{2}) Wx1,x2(t,f)=A1A2ej2π(f1f2)tδ(f2f1+f2)

可以看出,交叉项在频率 ( f 1 + f 2 ) / 2 (f_1+f_2)/2 (f1+f2)/2处产生,并以频率 f 1 − f 2 f_1-f_2 f1f2在时间上振荡。这种振荡特性是交叉项的典型表现,也是它们干扰信号真实时频特性的主要原因。

改进的Wigner-Ville分布

为了克服交叉项的影响,研究者提出了多种改进的Wigner-Ville分布。其中最常用的是平滑伪Wigner-Ville分布(Smoothed Pseudo Wigner-Ville Distribution, SPWVD):

S P W V D x ( t , f ) = ∫ − ∞ ∞ ∫ − ∞ ∞ g ( t − u ) h ( τ ) x ( u + τ 2 ) x ∗ ( u − τ 2 ) e − j 2 π f τ d τ d u SPWVD_x(t,f) = \int_{-\infty}^{\infty}\int_{-\infty}^{\infty} g(t-u)h(\tau)x(u+\frac{\tau}{2})x^*(u-\frac{\tau}{2})e^{-j2\pi f\tau}d\tau du SPWVDx(t,f)=g(tu)h(τ)x(u+2τ)x(u2τ)ej2πfτdτdu

其中 g ( t ) g(t) g(t)是时间平滑窗口, h ( τ ) h(\tau) h(τ)是频率平滑窗口。通过适当选择这两个窗口函数,可以在保持信号自项的同时有效抑制交叉项。

时间平滑窗口 g ( t ) g(t) g(t)主要用于抑制交叉项在时间上的振荡,而频率平滑窗口 h ( τ ) h(\tau) h(τ)则用于控制频率分辨率。这两个窗口的选择涉及到时频分辨率的权衡:较宽的时间窗口可以更有效地抑制交叉项,但会降低时间分辨率;较宽的频率窗口可以提高信噪比,但会降低频率分辨率。在实际应用中,常用的窗口函数包括汉宁窗(Hanning)、汉明窗(Hamming)、凯撒窗(Kaiser)等。不同的窗口函数具有不同的频谱特性,适用于不同的应用场景。例如,汉宁窗具有较低的旁瓣水平,适合抑制频谱泄漏;而矩形窗具有最佳的频率分辨率,但旁瓣较高,可能导致严重的频谱泄漏。

除了平滑伪Wigner-Ville分布外,还有许多其他改进的时频分布方法,如Choi-Williams分布、Born-Jordan分布、Zhao-Atlas-Marks分布等。这些方法各有特点,适用于不同类型的信号和应用场景。例如,Choi-Williams分布通过引入指数核函数来抑制交叉项,而保持良好的时频分辨率;Zhao-Atlas-Marks分布则特别适合分析具有线性调频特性的信号。

一个更一般的框架是Cohen类分布,它可以表示为:

C x ( t , f ) = ∫ − ∞ ∞ ∫ − ∞ ∞ ∫ − ∞ ∞ ϕ ( θ , τ ) x ( u + τ 2 ) x ∗ ( u − τ 2 ) e − j 2 π ( f τ + θ ( t − u ) ) d θ d τ d u C_x(t,f) = \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty} \phi(\theta,\tau)x(u+\frac{\tau}{2})x^*(u-\frac{\tau}{2})e^{-j2\pi(f\tau+\theta(t-u))}d\theta d\tau du Cx(t,f)=ϕ(θ,τ)x(u+2τ)x(u2τ)ej2π(fτ+θ(tu))dθdτdu

其中 ϕ ( θ , τ ) \phi(\theta,\tau) ϕ(θ,τ)是核函数,不同的核函数对应不同的时频分布。例如,当 ϕ ( θ , τ ) = 1 \phi(\theta,\tau)=1 ϕ(θ,τ)=1时,得到Wigner-Ville分布;当 ϕ ( θ , τ ) = e − θ 2 τ 2 / σ \phi(\theta,\tau)=e^{-\theta^2\tau^2/\sigma} ϕ(θ,τ)=eθ2τ2/σ时,得到Choi-Williams分布。通过设计适当的核函数,可以在抑制交叉项和保持良好时频分辨率之间取得平衡。

实例分析:线性调频信号

为了直观理解Wigner-Ville分布的特性,我们考虑一个线性调频信号(chirp信号):

x ( t ) = A exp ⁡ ( j 2 π ( f 0 t + 1 2 α t 2 ) ) x(t) = A\exp(j2\pi(f_0t + \frac{1}{2}\alpha t^2)) x(t)=Aexp(j2π(f0t+21αt2))

其中 f 0 f_0 f0是初始频率, α \alpha α是频率变化率。对于这种信号,其瞬时频率为 f i ( t ) = f 0 + α t f_i(t) = f_0 + \alpha t fi(t)=f0+αt,呈线性变化。

应用Wigner-Ville分布,我们可以得到:

W x ( t , f ) = A 2 δ ( f − ( f 0 + α t ) ) W_x(t,f) = A^2\delta(f - (f_0 + \alpha t)) Wx(t,f)=A2δ(f(f0+αt))

这是一个沿着瞬时频率轨迹的理想线,完美地反映了信号的时频特性。这展示了Wigner-Ville分布在分析非平稳信号时的优势。进一步,我们可以考虑更复杂的信号,如多分量线性调频信号:

x ( t ) = A 1 exp ⁡ ( j 2 π ( f 1 t + 1 2 α 1 t 2 ) ) + A 2 exp ⁡ ( j 2 π ( f 2 t + 1 2 α 2 t 2 ) ) x(t) = A_1\exp(j2\pi(f_1t + \frac{1}{2}\alpha_1 t^2)) + A_2\exp(j2\pi(f_2t + \frac{1}{2}\alpha_2 t^2)) x(t)=A1exp(j2π(f1t+21α1t2))+A2exp(j2π(f2t+21α2t2))

其Wigner-Ville分布为:

W x ( t , f ) = A 1 2 δ ( f − ( f 1 + α 1 t ) ) + A 2 2 δ ( f − ( f 2 + α 2 t ) ) + 2 A 1 A 2 cos ⁡ ( 2 π ( Δ f t + 1 2 Δ α t 2 ) ) δ ( f − f 1 + f 2 2 − α 1 + α 2 2 t ) W_x(t,f) = A_1^2\delta(f - (f_1 + \alpha_1 t)) + A_2^2\delta(f - (f_2 + \alpha_2 t)) + 2A_1A_2\cos(2\pi(\Delta f t + \frac{1}{2}\Delta\alpha t^2))\delta(f - \frac{f_1+f_2}{2} - \frac{\alpha_1+\alpha_2}{2}t) Wx(t,f)=A12δ(f(f1+α1t))+A22δ(f(f2+α2t))+2A1A2cos(2π(Δft+21Δαt2))δ(f2f1+f22α1+α2t)

其中 Δ f = f 1 − f 2 \Delta f = f_1 - f_2 Δf=f1f2 Δ α = α 1 − α 2 \Delta\alpha = \alpha_1 - \alpha_2 Δα=α1α2。可以看出,除了两个自项外,还存在一个交叉项,它在两个自项之间的中点位置产生振荡干扰。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DuHz

喜欢就支持一下 ~ 谢谢啦!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值